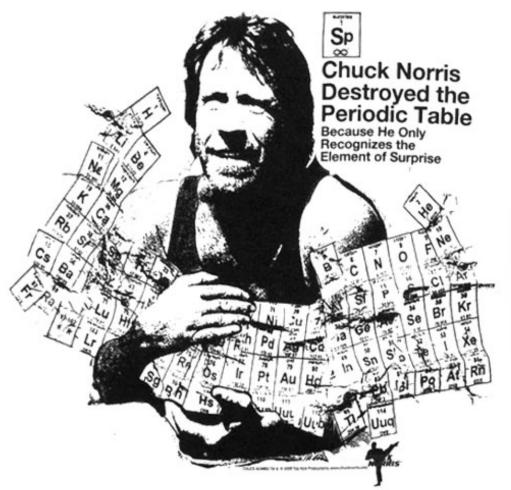
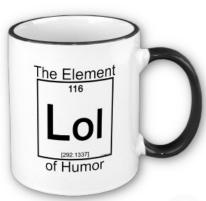
STUDENT

Unit 3 - The Periodic Table


STUDENT


VOCABULARY:

Ionization energy
Electronegativity
Atomic Radius
Ionic Radius
Chemical Reactivity
Metallic Character
Nonmetallic character
Metals
Metalloids
Nonmetals

Metalloids
Alkali metals
Alkaline Earth metals
Halogens
Noble Gases
Transition metals
Periodic
Periodic Law
Periods
Groups

Octet
States of matter
Solids
Liquids
Gases
Diatomic elements
Allotrope
Isoelectronic
Families

Chemical Periodicity/History of the Table:

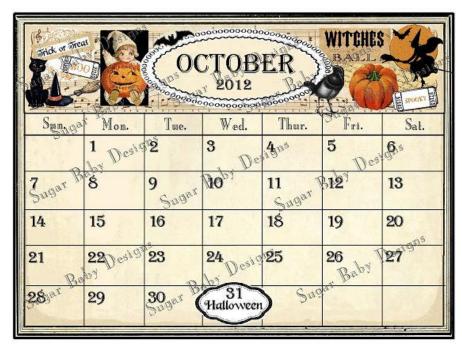
- Dmitri Mendeleev (Russia)
 - \succ 1st chemist to arrange newly found elements into a table form/usable manner
 - > Elements arranged according to _____
 - > Resulted in _____ or periodic intervals being _____

	H 1.01	Ш	Ш	IV	V	VI	VII			
Ī	Li 6.94	Be 9.01	B 10.8	C 12.0	N 14.0	O 16.0	F 19.0			
	Na 23.0	Mg 24.3	AI 27.0	Si 28.1	P 31.0	S 32.1	CI 35.5		VIII	
	K 39.1	Ca 40.1		Ti 47.9	V 50.9	Cr 52.0	Mn 54.9	Fe 55.9	Co 58.9	Ni 58.7
	Cu 63.5	Zn 65.4			As 74.9	Se 79.0	Br 79.9			
	Rb 85.5	Sr 87.6	Y 88.9	Zr 91.2	Nb 92.9	Mo 95.9		Ru 101	Rh 103	Pd 106
	Rb 85.5 Ag 108	Sr 87.6 Cd 112			Nb 92.9 Sb 122	Mo 95.9 Te 128	I 127	Ru 101	Rh 103	Pd 106
	85.5	87.6 Cd	88.9 In	91.2 Sn	92.9	95.9 Te	_	Ru 101 Os 194	Rh 103 Ir 192	Pd 106 Pt 195
	85.5 Ag 108 Ce	87.6 Cd 112 Ba	88.9 In 115 La	91.2 Sn	92.9 Sb 122 Ta	95.9 Te 128 W	_	101	103	Pt

*Henry Moseley (England)

http://en.wikipedia.org/wiki/Henry_Moseley

- Used X-ray spectra to prove the existence of the ______
- > Arranged table by _____ (or # of protons) which proved to be much more effective
- > How the modern day periodic table is arranged
- > No more gaps!


H ¹ Li Na	Be 12 Mg	Periodic Table (hydrogen alkali metals alkali earth metals transition metals				of the Elements poor metals nonmetals noble gases rare earth metals				© wv	c 6 C 14 Si		O 8 16 S	F 17 CI	He 10 Ne 18 Ar		
K 37	Ŭ	SC 39	722 Ti	V 23	Cr 42	25 Mn	Fe 44	CO 45	28 Ni	Cu 47	Zn 48	31 Ga	Ge 50	33 As	34 Se	35 Br	Kr
Rb Cs	Sr 56 Ba	Y La	Zr 72 Hf	Nb Ta	Mo W	Tc ⁷⁵ Re	Ru ⁷⁶ Os	Rh Ir	Pd 78 Pt	Ag ⁷⁹ Au	Cd 80 Hg	In 81 TI	Sn Pb	Sb 83 Bi	Te 84 Po	I 85 At	Xe 86 Rn
Fr	Ra Ra	Ac	Unq	¹⁰⁵ Unp	Unh		¹⁰⁸ Uno	Une	Unn								

Ce ⁵⁸	Pr	Nd		Eu					Er	Tm	Yb 70	Lu Zi
Th	Pa Pa	U 92	94 Pu	Am	Cm	97 Bk	Cf 98	Es	Fm	Md	102 N O	103 Lr

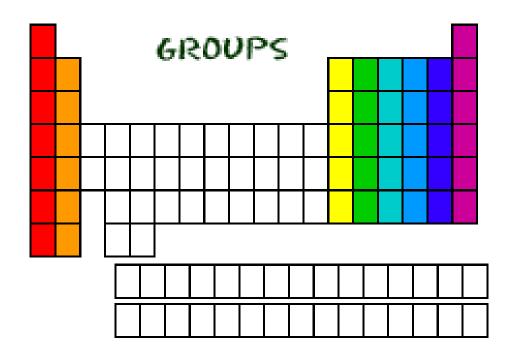
Periodic l	_aw = elements	in periodic table are	 functions
of their			

- 1) As you move across a ROW or PERIOD, you add 1 PROTON to the nucleus, and 1 ELECTRON to the VALENCE SHELL
- 2) The MAXIMUM number of VALENCE ELECTRONS any element can have is EIGHT, therefore any element with 8 valence electrons marks the END of a ROW or PERIOD. The next element will be the first of a new row and will restart the pattern with 1 VALENCE ELECTRON.
 - *Think of the way Sunday marks the start of a new row on a calendar and restarts the weekly pattern.
- 3) The number of **VALENCE ELECTRONS** dictates the number of **BONDS** an atom of an element can form
- 4) The number of **BONDS** an element can form dictates that element's **CHEMICAL PROPERTIES**
- 5) As you move down a GROUP or COLUMN, you add

 1 PRINCIPAL ENERGY LEVEL or ELECTRON SHELL
- 6) All elements in the SAME COLUMN or GROUP have the SAME NUMBER OF VALENCE ELECTRONS, therefore elements in the SAME COLUMN or group tend to have SIMILAR CHEMICAL PROPERTIES.
 - *Think of how you feel on every Monday or every Friday.
 That pattern repeats itself in weekly periods.

Arrangement of the Periodic Table:

The Periodic Table is made up of **PERIODS** and **GROUPS**:


Element	Element Name	Group #	Electron	Lewis
Symbol			configuration	diagram
K				
Ca				
Ga				
Ge				
As				
Se				
Br				
Kr				

*OCTET = full _____ (8 electrons, except for _____ elements, for whom ____ marks a full valence shell)

Remember...

• **GROUPS** = ______ (run up & down)

Use the Periodic Table in your CRT's to complete the table below for the Group I elements pictured next to it:

	Element Name	Electron configuration	Lewis diagram
H 1			
Li 3			
Na			
K 19			
Rb			
Cs ⁵⁵			
Fr			

PRACTICE:

1.	Mendeleev arranged the original periodic table according to what? What was the problem with this arrangement?
2.	Henry Mosely proved the existence of what subatomic particle? How did he then arrange the periodic table?
3.	How many electrons does the last element in every row or period have in its valence shell?
4.	What happens to the number of energy levels as you move across a period?
5.	What happens to the number of energy levels as you move down a group?
6.	The chemical properties of an element are based on what?
7.	Periods are similar to what on a calendar?
8.	Groups are similar to what on a calendar?
9.	Use the calendar analogy to explain whether it's more likely to find similar characteristics among elements in the same group or elements in the same period.
10.	What happens to the number of valence electrons as you move across a period?
11.	What happens to the number of valence electrons as you move down a group?
12.	Use the concept of valence electrons to explain whether it's more likely to find similar characteristics among elements in the same group or elements in the same period.

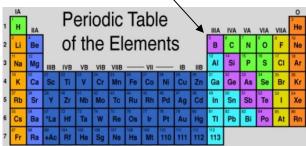
The Groups (a more in-depth look...)

Group 1 → <u>ALKALAI METALS</u> (FAMILY)

http://www.youtube.com/watch?v=uixxJtJPVXk
 All have valence electron Easily their one electron to become ions reactive → never found alone in nature Contains the reactive metal: Probably but it's so rare, we've got to go w/
Group 2 → <u>ALKALINE EARTH METALS</u> (FAMILY) http://www.youtube.com/watch?v=DFQPnHkQIZM
 All have valence electrons Prefer to their two electrons to become ions reactive → never found alone in nature
Groups 3-12 → TRANSITION METALS
 Found in the of the periodic table (the D block) Form in solution (ex: Cu is bright blue when dissolved in water) ➤ This concept is ALWAYS on the REGENTS EXAM!!! Tend to be → will lose electrons or gain them depending on what other are present
 reactive group of metals Groups 13-16 → <u>BCNO</u> groups (not a single group)
 groups Metals, nonmetals, & metalloids found along the staircase (many different properties)

	valence electrons Like to gain electron to become ions with charge
	(Remember,)
•	Formcalled
•	Contains the most nonmetal:
•	All making up the group
	Three states of matter found in group:
	<u> </u>
•	Ex:
Gro	up 18 → NOBLE GASES (FAMILY)
	হত্তিৰ
•	Or
•	Have (e- in valence shell/outer energy level)
	Most group; exist in nature
	Exception to the is (only has valence e-)
	EVERYONE WANTS TO BE A NOBLE GAS & HAVE 8
	ELECTRONS! 8 IS GREAT!
•	Ex:
•	
Нус	drogen → Not officially part of a group
•	Both a and a
	Can be seen as
The	Lanthanide/Actinide Series – two rows on bottom of table
(det	ached) - Elements 58 - 71 & 90 - 103
•	Actually belong to the

Group 17 → HALOGENS (FAMILIY)


PRACTICE:

•	Which of the groups are considered families? Give the group numbers and the names of the families.							
2.	Which group contains elements that do not typically react with other elements? Give the group number and the name.							
3.	Explain why elements in the group named above is not reactive.							
l .	Which group contains the most active metals? Give the group number and the name.							
5.	Which group contains the most active nonmetals? Give the group number and the name.							
٠.	Which element is part of Group I, but is not an Alkali Metal?							
•	Which groups form colored ions in solution? Give both the group numbers and the name.							
•	Which group contains the second most active metals? Give both the group number and the name.							
•	Which groups contain the most unpredictable metals? Give both the group numbers and the name.							

The Periodic Table can be "KEYED" for many things

TL		C 4	:	_	ise	_
١r	10	3 1	aı	r'CC	15e	$\overline{}$

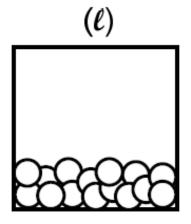
1. metals: make up _____ of table _____ of or _____ "staircase"—except _____ • all _____(except ____) • Must have _____ properties of a metal: 1. _____ (can be hammered/molded into sheets) 2. _____ (can be drawn/pulled into wire) 3. have _____ (are shiny when polished) 4. good _____ (allow heat & electricity to flow through them) > due to "sea of ______ valence electrons" • like to to form ions 2. nonmetals: • _____ of or _____ staircase mostly _____ and ____ @ STP—except _____ ____ malleable/ductile; _____ (shatter easily) ______ luster (______) _____ or ____ conductors • like to to form ions May have _____ or ____ properties of a metal 3. metalloids (AKA semi-metals): • Have _____ properties of a metal • _____ staircase (between _____ & ____ (except ____)

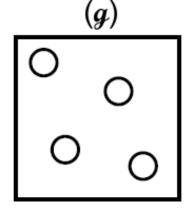
PRACTICE

1.	Which type of element is located below or to the left of the staircase? What is the exception?								
2.	Which type of element is located above or to the right of the staircase?								
3.	Which type of element is located on the staircase? What are the exceptions?								
4.	Which of the following is NOT a property of a metal? a.) Shiny; has luster d.) Brittle b.) Malleable e.) Good conductor c.) Ductile								
5.	i. A sample of an element is shiny, is a good electrical conductor, and does not shatter when hit with a hammer. What type of element is it? (Circle one)								
	METAL/NONMETAL/METALLOID								
6.	. A sample of an element is dull, does not conduct electricity, and shatters upon being hit with a hammer. What type of element is it? (Circle one)								
	METAL/NONMETAL/METALLOID								
7.	. A sample of an element is shiny, does conduct electricity, and shatters upon being hit with a hammer. What type of element is it? (Circle one)								
	METAL/NONMETAL/METALLOID								
8.	. What do metals have that allows them to conduct heat and electricity so well?								

STATES OF MATTER (at STP)

Table A Standard Temperature and Pressure


Name	Value	Unit
Standard Pressure	101.3 kPa 1 atm	kilopascal atmosphere
Standard Temperature	273 K 0°C	kelvin degree Celsius


1.	solids(s)	- most	elements	are solids	at S	TP; ex:
----	-----------	--------	----------	------------	------	---------

- a. Definite _____
- b. Definite
- 2. liquids (1) only TWO elements at STP (Br & Hg); ex: _____

 - a. Definite ______b. Takes the ______of the container
- 3. gases (g) H, N, O, F, Cl, & all of group 18 (noble gases); ex: _____
 - a. No definite _____
 - b. _____their container

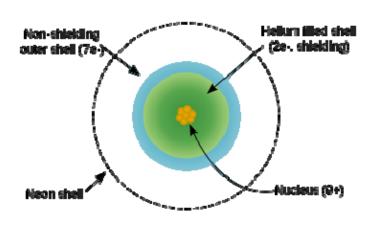
<u>Diatomic Elements (7UP)</u> - "Siamese Twins"

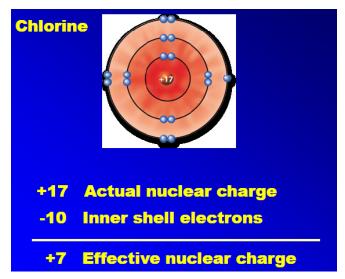
Elements that are								in nature										
				i	n or	der	to	fill	the	eir _								
Both need the same number of electrons to fillPerfect sharing								ill v	aler	nce :	shell							
	>	Lool	k at	Lei	wis	str	uctu	ıre	for	2 o	xyg	en o	ator	ns:				
											. •							
Conto	in a	2					at	oms	3									
7 of :	the	m—ı	mus	t m	emo	oriz	e! U	lse '	7-U	P tr	ick	(se	e b	elov	v)			
Inclu	de ·	the	foll	owi	ng e	elen	nent	s:										
	>									_ (1	mak	e tl	ne s	hap	e o	fa.)
	>																	
													6		ч			
GROUF			Peri	iodi	с Та	ble (of th	ne E	lem	ents	:		0					
1 H								_									PHE	
2 Li	4 Be	1										5 B	6 C	7 N	8 O	9 F	10 Ne	
11	12											13	14	15	16	17	18	
3 Na	Mg 20	IIIA 21	IVA 22	VA 23	VIA	VIIA 25	26	VIIIA	28	1B	11B	AI	Si 32	P 33	S 34	CI 35	Ar 36	
9 4 K	Ca 38	Sc 39	Ti	V	Cr 42	Mn 43	Fe 44	Co 45	Ni 46	Cu 47	Zn 48	Ga ⁴⁹	Ge 50	As	Se 52	Br 53	Kr 54	
5 Rb	Sr	Ϋ́Υ	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	ln	Sn	Sb	Те	1	Xe	
6 Cs	Ba	/	Hf	⁷³ Та	*W	Re	Os	77 Ir	Pt	Au	Hg	81 TI	Pb	Bi	Po	At	Rn	
7 Fr	Ra	//	Rf	105 Db	Sg	Bh	108 Hs	109 Mt	Uun	Uuu	Uub							
			57 La	⁵⁸ Ce	⁵⁹ Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	Er	⁶⁹ Tm	⁷⁰ Yb	71 Lu	
		//	89 Ac	90 Th	91 Pa	92 U	93 N p	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 M d	102 N o	103 Lr	
		į																
	· = =	1 -	r o	a.a.		الم م	.		_			-		امما	- 1-c	.	(na a	احدمور
Motrop																	-	
n the so	ime				, bu	ı Wi	iri (uiTŢ								anc	ı aıŢ	reren
									_ pr	ope	rtie	25						
ام بن	· n o -		. د			_												
x: allot	•										<i>(</i> :		VS.	 ادا:				
x: allot	rop	es (OT C	arb	on ·	7					(1	n p	enc	115)	۷S.			

PRACTICE

1.	Which phase of matter has the <i>most</i> definite shape?
2.	Which phase of matter has the <i>least</i> definite shape?
3.	The <i>volume</i> of which phase of matter changes based on the volume of its container?
4.	The <i>shape</i> of which phase changes based on its container?
5.	Give the chemical symbol for each of the diatomic elements
6.	Why can't any of the diatomic elements exist alone or unpaired?
7.	Why is it beneficial for one atom of a diatomic element to pair up with another atom of that same element?

WHY the Periodic Table is PERIODIC...


As you move _____


1. ______

- a. Additional proton (massive and +) wins the tug-of-war with additional electron (tiny and -)
- b. Pulls the electron cloud in more tightly (magnet/cart demo)

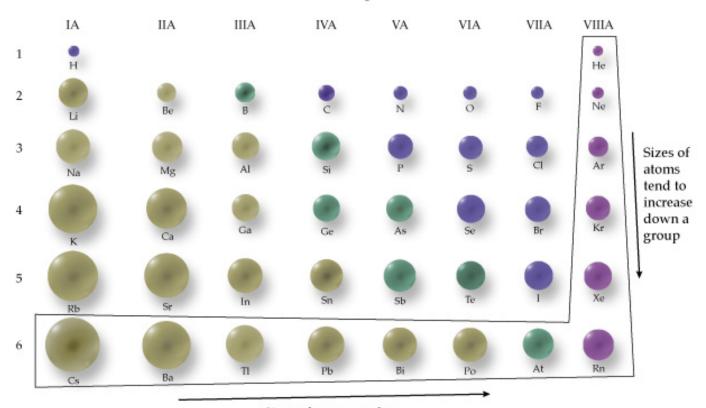
2. _____

- a. Kernel electrons interfere with attraction between the protons in the nucleus and the valence electrons
- b. Every element in the same period/row has the same number of kernel electrons.

As you move _____

1. ______...BUT...

2.


- a. Additional orbital/energy level means more kernel electrons (-) to interfere with the attraction between the protons (+) and the valence electrons (-)
- b. Valence electrons able to drift farther from the nucleus

IF SHIELDING INCREASES, THAT TRUMPS EVERYTHING

The Periodic Trends

1. <u>Atomic Radius</u> = $\frac{1}{2}$ the distance between neighboring nuclei of a given element

Relative Atomic Sizes of the Representative Elements

Sizes of atoms tend to decrease across a period

Copyright @ 2000 Benjamin/Cummings, an imprint of Addison Wesley Longman, Inc.

Going down a group, atomic radius INCREASES

- Reasons:
 - Adding ______ to the outside of the atom take up ______

Going across a period, atomic radius DECREASES

- Reasons:
 - _____ is _____
 - Same # of energy levels, no increase in shielding

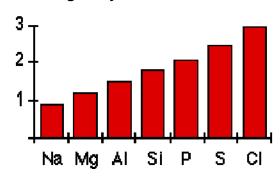
•	Reason: pulling on
	 Electrons outnumber Protons
	 Electrons drift farther away from nucleus
-	→ pulling on
	 Protons outnumber Electrons
	 Electrons pulled closer to nucleus
Α	ectron configuration of the nearest noble gas II members of an ISOELECTRONIC SERIES have the ame NOBLE GAS CONFIGURATION
E	x: N³-, O²-, F-, Na+, and Mg²+ • all have electrons
	 all have the same electron configuration as the noble gas

http://www.mhhe.com/physsci/chemistry/essentialchemistry/flash/atomic4.swf

PRACTICE:

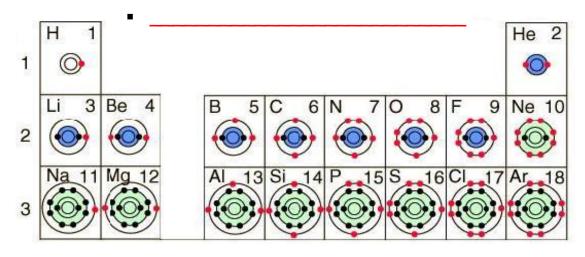
1.	Shielding increases as increases.	the number of					
2.	Who wins the "tug of why?	war" between pr	rotons and electron	ns and			
3.	What happens to atom left to right)?	•	•	riod (from 			
4.	Explain your answer to of principal energy lev		nuclear charge ar	nd number			
5.	What happens to atom	nic radius as you	move down a grou	p?			
6.	Explain your answer to #4 in terms of nuclear charge and number of principal energy levels.						
7.	Is the ionic radius of radius?		r smaller than its o	atomic			
8.	Explain your answer to	o #6 in terms of	protons and elect	rons.			
9.	Is the ionic radius of radius?	a nonmetal large	r or smaller than i	its atomic			
10). Explain your answer t	o #8 in terms o	f protons and elec	trons.			
11.	. Which ion has the san	ne electron conf	iguration as an ato	m of He?			
	a. <i>C</i> a ²⁺ b	. Н ⁻	c. O ²⁻	d. Na⁺			
12	2. Which of the following a. Ar b	ng does not have . Na ⁺	a noble gas config c. Mg ²⁺	guration? d. 5			

2. Electronegativity:


- _____ to ____
- _____of an atom/ion for e⁻like _____
- _____ → _____ to achieve full _____ → _____ → ____ to achieve full ____ → ____
 - Values range from ______ (Table S in CRT)
 - electronegative element = _____
 - electronegative elements = _______

Going _____, electronegativity _____

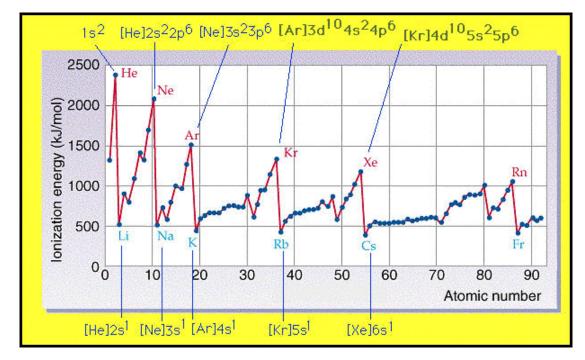
- Reasons:


 - does

Electronegativity of the Period 3 Elements

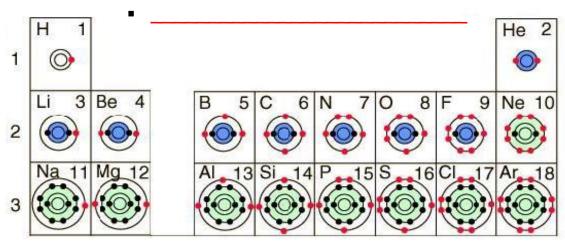
Going _____, electronegativity _____

• Reasons:


3. <u>Ionization Energy</u> = amount of ENERGY needed to REMOVE the most loosely bound e⁻ from and atom/ion (in the GAS phase) (values for each element listed in Table S)

(_____ with electrons, like _____)

X + energy → _____


Going across a period, ionization energy _____

- Reasons:
 - _____
 - does _____

Going down a group, ionization energy _____

Reason:

4. Reactivity =	or	of an element to go
through a	change (or _	with another element)
* are	, when it	t comes to electrons
**	are	, when it comes to electrons
***CAN'	T COMPARE METAL	S TO NONMETALS!!!
(Sorry for a	all the negative electi	ron terminologyGet it?)
METALS: (recall:	the most reactive me	etal is)
 Going acros 	s a period , reactivity	<i>'</i>
Reason	ns:	
•	does	S
Going down	a group, reactivity _	
Reason	ղ:	
Grou	nk below to see an Alup I Metals reacting i	
• Going acros	s a period , reactivity	nonmetal is / (until you _ → unreactive)
•	does	S
_		
Reason		
		

You should now be able to ...

- ✓ Describe the origin of the periodic table
- ✓ State the modern periodic law
- \checkmark "Key" the periodic table according to metals vs. nonmetals and all 3 phases
- Explain how an element's electron configuration is related to the element's placement within a period and a group on the periodic table'
- ✓ Identify and state the properties of the following groups in the periodic table:
 - Alkali metals
 - * Alkaline earth metals
 - Halogens
 - * Noble Gases
 - Transition metals
- ✓ State the trends of the following properties within periods and groups of elements including:
 - Ionization energy
 - Electronegativity
 - ❖ Atomic Radius
 - Chemical Reactivity
 - Metallic/Nonmetallic character