Rotations

A **rotation** is a transformation that turns a figure about a fixed point called the center of rotation. An object and its rotation are the **same shape and size**, but the **figures may be turned in different directions**. Rotations can occur in either a **clockwise** or **counterclockwise** direction. The figure does not change size.

Notice that a rotation of 180° about the origin is the same as a point reflection. A rotation of 360° would match the image with its preimage. A positive angle of rotation turns the figure counterclockwise, and a negative angle of rotation turns the figure in a clockwise direction.

Counterclockwise	Clockwise	Rule
R_{90}	R_{-270}	$(x,y) \to (-y,x)$
R_{180}	R_{-180}	$(x,y) \to (-x,-y)$
R_{270}	R_{-90}	$(x,y) \to (y,-x)$

Notice that degree movement on a unit circle goes in a **counterclockwise** direction. You will want to remember the layout of the unit circle when you are graphing figures and their

rotations.

Examples

- 1. What is the image of the point (6, -3) under the rotation R_{90} about the origin?
- **2.** What is the image of the point (-5, 10) under the rotation R_{270} about the origin?
- 3. What is the image of the point (2,4) under the rotation R_{-90} about the origin?
- 4. A. Graph and label ΔJKL with vertices J(2, 2), K(4, -5), and L(-1, 6)
 - B. Graph, label and state the coordinates of $\Delta J'K'L'$, the image of ΔJKL after a rotation of 180° about the origin.

5. A rectangle is plotted on the coordinate plane below. Draw the image of this rectangle after the rotation R_{-90} .

6. A triangle is plotted on the coordinate plane below. Draw the image of this triangle after the rotation R_{90} .

- 7. A clockwise rotation of 90° is the same as a counterclockwise rotation of _____.
- 8. A clockwise rotation of 180° is the same as a counterclockwise rotation of _____.
- 9. A clockwise rotation of 270° is the same as a counterclockwise rotation of _____.
- 10. A rotation of 360° is the same as a rotation of _____.
- 11. The drawing below shows a rotation of _____ or _____.

GEOMETRY

Name _____ Date____

Lesson 13: Rotations

Exit Ticket

Find the center of rotation and the angle of rotation for the transformation below.

