UNIT OVERVIEW

	STAGE ONE: Identify Desired Results					
	NYS Standards	Long-Term Transfer Goal				
		At the end of this unit, students will use what they have learned to independently				
	P.I. 5.1 - Students can					
	explain and predict different	Use mathematical modeling to explain and predict patterns of motion in one dimension.				
	patterns of motion of					
	objects (e.g., linear and	Meaning				
	uniform circular motion,	Enduring Understandings	Essential Questions			
	velocity and acceleration,	Students will understand that	Students will consider such questions as			
	$(P \mid 5 1)$		How can we develop and use mathematical			
	(F.I. J.I)	NTS:	How can we develop and use mathematical			
		with respect to some other object or point	predict the motion of an object in 1D2			
		The idea of absolute motion or rest is	predict the motion of an object in 1D:			
		misleading.				
			Active Physics			
		5.1b The motion of an object can be				
		described by its position, direction of motion,	How can motion be described using the			
		and speed (rate of change).	concepts of position, velocity, and			
			acceleration?			
		5.1d An object in linear motion may travel				
		with a constant velocity* or with	How are measurements crucial for			
		acceleration*.	understanding the motion of a vehicle?			
		5.1e An object in free fall accelerates due to	How is velocity defined and how is it			
		the force of gravity. Friction and other forces	measured?			
		deviate from its theoretical motion	incustricu.			
		(Note: Initial velocities of objects in free fall	How can motion be represented			
		may be in any direction)	granhically?			
			graphically:			
		Active Physics				
		Motion can be described in terms of position,				
		velocity and acceleration				
		Motion can be described both algebraically				
		and graphically				
		Complex phenomena can be mathematically				
S		modeled				
ards		hioucicu				
and		Acauisit	ion			
als/Sta		What knowledge will students learn as part	What skills will students learn as part of this			
		of this unit?	unit?			
99			 construct and interpret graphs of distance 			
hed		• Distance (m) - describes change in position	vs time			
lisł		regardless of direction	 determine and interpret slopes 			
stal		 Displacement (m) – describes change in 	 use classical kinematics equations to 			
ű		position relative to a point and direction	calculate distance, velocity and time			

 Speed (m/s) – describes how distance changes as time goes by Velocity (m/s) – describes change in position over time. 	 use meter sticks to appropriately measure distance or length in meters and centimeters use appropriate units in order to describe physical quantities (m, m/s, s) analyze data in order to define patterns and trends. apply the concepts of physics and scientific reasoning to find the solution to a complex problem

STAGE TWO: Determine Acceptable Evidence					
	Assessment Evidence				
Criteria for to assess understanding: (This is	Performance Task focused on Transfer:				
used to build the scoring tool.) Students demonstrate understanding of the relationship between distance, time and speed (velocity) both conceptually and mathematically	 Practice Transfer Students design procedures and chose data analysis techniques in order to figure out the average speed of "a series of moving objects such as constant speed of and free falling tennis balls Design an experiment to find out the acceleration due to gravity Summative Transfer Task Develop an experiment that would help you figure out if there is a speeding problem in a neighboring street. Students will need to write a letter to the department of transportation with recommendations based on their findings. 				
Students can design and carry out experimental procedures that allow them to measure the average speed of a series of cars in order to answer an experimental questions	 Other Assessment Evidence: Daily Bellwork, Summary and Closure activities Homework Written formative feedback on experimental designs Quizzes Model Standardized Test 				
Students can perform mathematical analysis (graphical and calculations) of data.					
Students can use analysis to reach and support an evidence based conclusion.					

T, M, A (Code for Transfer, Meaning Making and Acquisition)	STAGE THREE: Plan Learning Experiences		
	Intro to motion - M	Evidence of learning:	
	 Introduce final project Motion stations activity – students experience different kinds 	Daily Closure questions gimed	
	of motion	at assessing the day's learning	
	Intro to Distance, time and average speed - M		
	3. Revisit final project	Sample Closure questions	
	4. Distance vs time lab – students collect distance and time data of another student in motion. Students graph this data and	 Which of the following cars do you believe moved the fastest? 	
	use graphs to figure out how they can be used as models of motion	 Car A – moved between the 25km and the 27km marker in 5 seconds 	
	Distance and Time Graphs - M	 Car B – moved between the 30km and the 35km marker in 5 seconds Explain your reasoning and show any work 	
		you may need to do to answer the question	
	 Interpret distance vs time graphs Move it activity – students use what they have learned so far 	2) Which of these graphs represents	
	to try to predict what distance vs time graphs would look like for different kinds of linear motion (i.e constant speed,	Explain why	
	standing still and accelerating)	 Regents Style question – Based on graphical info students' answer the 	
	Motion Story/Formalizing Concepts – A/T	question "If all these cars are going to the same place and they all take the	
	7. Notes. Students construct formal definitions for the concepts they have experienced so far	Explain	
	8. Practice Problems		
	9. Practice Interpreting graphs		
	10. Motion story activity – Students use distance vs time graphs		
	as a reference to write a story that matches the type motion represented by the graph – (T)		
	Calculating Speed - A		
	11. Using $y = d/t$		
	12. Students practice use of the average speed formula		
	Writing Procedures/Electric Cart Speed – M/A		
	13. Students first experience with the <i>experimental design</i>		
	<i>grading rubric</i> . I will explain criteria and sample procedures for students to evaluate		
	 Students take their first stab at writing procedures for an investigation 		

 Students design an investigation that will help them figure out the speed of a "constant speed" cart 	
Analyzing Data/End Electric Cart Speed – M/A	
16. Students look at feedback on procedures and make necessary changes based on feedback	
17. Students Carry out procedures and organize data and make relevant calculations	
Speeding Problem Investigation begins - T	
 Students independently design and carry out investigation in order to figure out if there is a speeding problem in the neighboring street 	
Speeding Problem Day 2 – T	
19. Students analyze collected data, reach conclusions and finish their written reports	