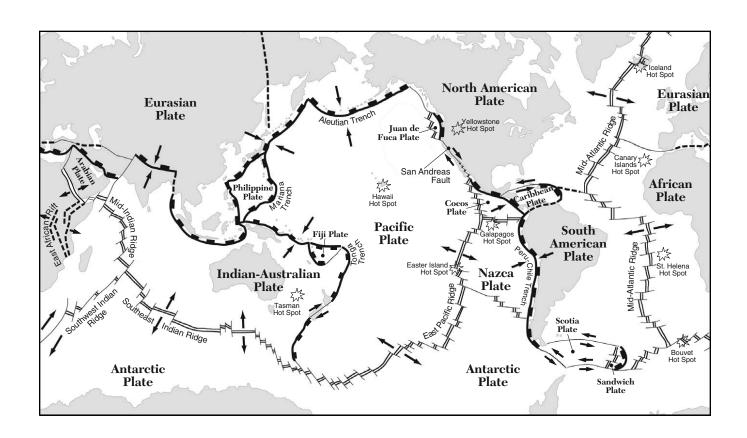
	Period:	Plate Tectonics The Physical Setting: Earth Science
	Class Notes: Plate	e Tectonics
I. Continental Drift		
• Continental Drift	;	
• Pangaea -		
	D Teetry	vs Sea

Alfred Wegener (1915)

- German _____ and ____

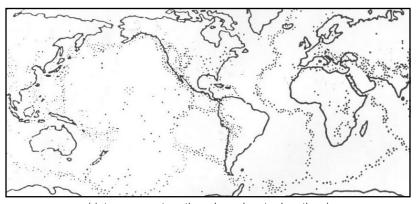
- Evidence of Continental Drift:

1.		 	


2. _____

3. _____

II. Crustal Activity

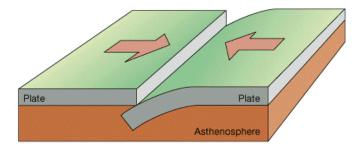

- Plate Tectonics -
- <u>Plate</u> _____

- Earth's surface consists of a dozen major plates and some minor ones
- The plates are moving at rates close to _____ cm/year

•	Convection Currents -		
	Magma heats up causing it to	and	_
	Magma cools down causing it to	and	

- The plates are moving on top of the asthenosphere due to density differences
- The idea of continental drift had been around since the 1900's, but lacked enough scientific evidence to support the theory
- New advancements after World War II help provide the evidences needed to validate the Theory of Plate Tectonics
- Earthquake Evidence
 - Scientists noticed that earthquakes do not occur at random locations, but throughout the world along ______

(dots represent earthquake epicenter locations)


- Volcanic Evidence
 - Occurs at plate boundaries where plates are interacting
 - Ring of Fire -

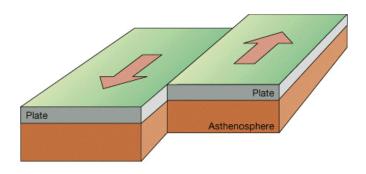
•	Rock	Evidence
	•	Sedimentary deposits and igneous lava flows are usually placed down in horizontal layers
	•	Sometimes movement along boundaries causes these layers to
		or
•	Mount	tain Evidence
	•	As plates collide they sometimes are pushed
	•	

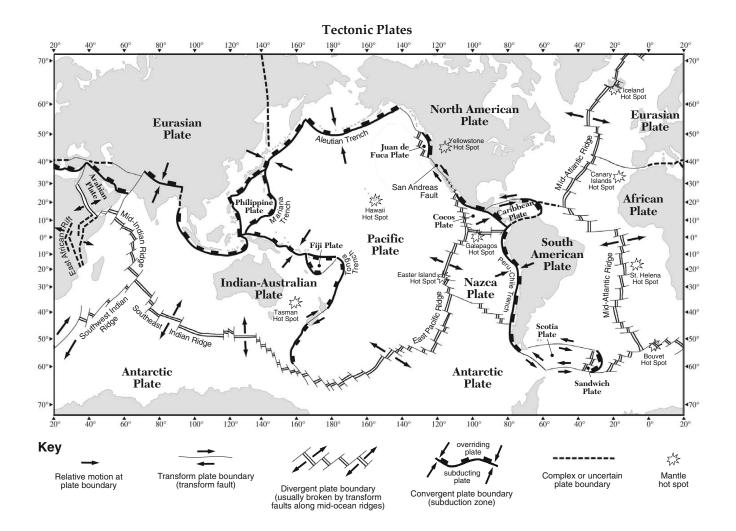
III. Crustal Boundaries

Tectonic plates are constantly moving and interacting	
As they move across the teract in various ways	and form plate boundaries they in-
Types of plate boundaries:	-
•	-
Convergent Boundary	
 Example: the India Plate pushing upward into Eura Mountains Subduction - 	asian Plate and creating the Himalayan
Subduction -	

• Example: the Nazca Plate being consumed under the South American Plate

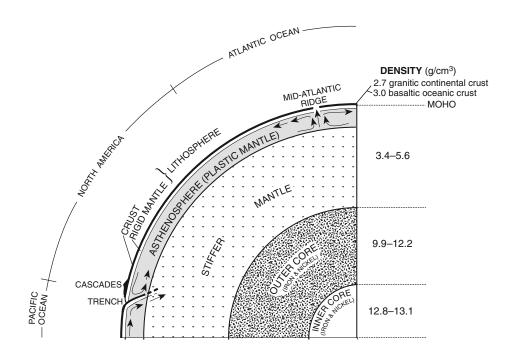
•	Three	Types	of Co	nvergent	Boundaries
---	-------	-------	-------	----------	------------


•			


- _____
- •

Exam	ole: part of the Mid-Atlantic Ridge emerges from the ocean and splits Icela
	Plate
	Asthenosphere
Coo. [look Characting
<u> </u>	loor Spreading -
Mid-C	cean Ridge -
Mid-A	tlantic Ridge
•	Separates the N. and S. American Plates from the Eurasian and African I
Rift V	ılley
-	
	ent Plate Boundary Evidence
	ent Plate Boundary Evidence
	Scientists dragged a
	Scientists dragged a across the ocean floor and discovered a unique magnetic pattern where stripes of and
	Scientists dragged a across the ocean floor and discovered a unique magnetic pattern where stripes of

Transform Boundary -


• Example: the San Andreas Fault is 800 km long and runs throughout California

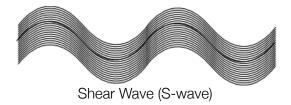
IV. Earth's Interior

•	Earth's interior structures are known through the study of	
•	Seismic waves refract,,	and are ab-
	sorbed depending on the material they are transmitted through	
•	Lithosphere -	
	Continental Crust -	
	Oceanic Crust -	
•	MOHO - thin interface separating the lithosphere from the asthenosphere	
	in in the detroited	
•	Asthenosphere -	
	<u>Discovery</u> : a decrease in velocity from earthquake waves	
	<u>Discovery.</u> a decrease in velocity norm eartinquake waves	
_	Montlo	
•	Mantle -	
•	Outer Core -	
	 <u>Discovery</u>: absorption and refraction of earthquake waves 	
•	Inner Core -	
	<u>Discovery</u> : an increase in velocity from earthquake waves	

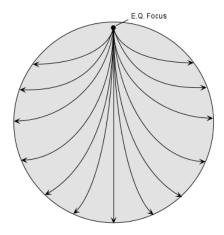
V. Earthquakes

•	Earthquake -	

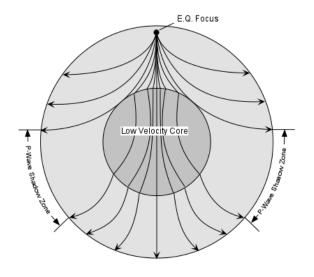
- Most earthquakes are caused by a movement along a fault where
 energy is given off as a seismic wave
- Epicenter -
- Focus -
- Seismometer -
- Seismogram -

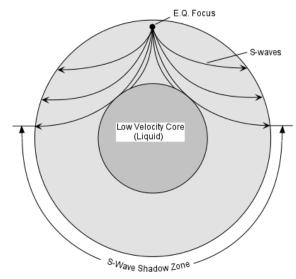

The values will differ based on the	ne distance from the epicenter	
·		
Intensity	Type of Damage	
	Instrumental	
II	Feeble	
III	Slight	
IV		
V	Rather Strong	
VI		
VII	Very Strong	
VIII		
IX	Ruinous	
X	Disastrous	
XI	Very Disastrous	
XII		
ighter Coole . legarithmic coole that maga	uraa tha	
ased during an earthquake	ires the	
agnitude - a number to quantify the amou om an earthquake	nt of re	eleas
ne Richter Scale's magnitude is determine	d from the following measurements:	

- Primary Wave (P-wave)
 - •
 - Travel through _____, ____, and _____
 - Compressional -

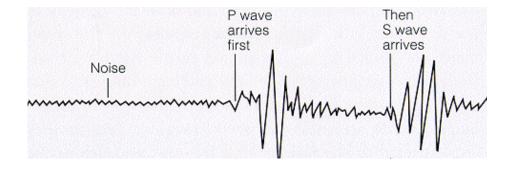


Compressional Wave (P-wave)

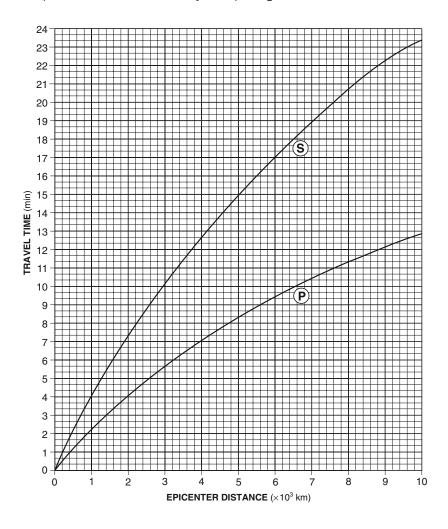

- Secondary Wave (S-wave)
 - _____
 - Travel through _____ only
 - Shear -


• Seismic waves radiate away from the focus

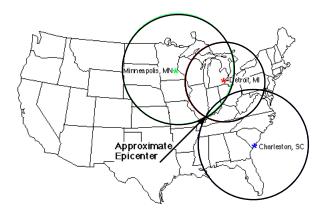
- Shadow Zone -
 - P-waves are _____ when they reach the liquid outer core
 - S-waves are _____ when they reach the outer core and are not transmitted through to the other side



P-wave Shadow Zone


S-wave Shadow Zone

• Epicenters are located using the velocity differences between the p-wave and s-wave



• Since the p-waves travel ______ then s-waves, as your distance _____ from the earthquake's epicenter the arrival time between the two waves will be

• Distance to the epicenter is determined by comparing the arrival times and the E.S.R.T.

• To find the epicenter location you need to triangulate a position using ______ different seismometer stations

