☐ DO NOW – Geometry Regents Lomac 2014-2015 Date	e due Similarity Simplifying 7.1 Radicals
(DN) ON BACK OF PACKET	Name LO: I can simplify radical expressions including adding, subtracting, multiplying, dividing and rationalizing denominators.
(1) Simplifying Radicals: Finding hidden perfect squares and taking their root. Simplify each expression by factoring to find perfect squares and then taking their root.	
1) $\sqrt{75}$	2) $\sqrt{16}$
3) $\sqrt{36}$	4) $\sqrt{64}$
5) $\sqrt{80}$	6) $\sqrt{30}$
7) $\sqrt{8}$	8) $\sqrt{18}$
9) $\sqrt{32}$	10) $\sqrt{12}$
11) $\sqrt{8}$	12) $\sqrt{108}$
13) $\sqrt{125}$	14) $\sqrt{50}$
15) $\sqrt{175}$	16) $\sqrt{28}$
17) $\sqrt{45}$	18) $\sqrt{72}$

20) $\sqrt{150}$

19) $\sqrt{20}$

(2) calculator

Simplifying Radical Expressions: Adding and Subtracting

Add or subtract radicals by simplifying each term and then combining like terms.

a.
$$2\sqrt{2} + \sqrt{5} - 6\sqrt{2} = -4\sqrt{2} + \sqrt{5}$$

Subtract like radicals.

b.
$$4\sqrt{3} - \sqrt{27} = 4\sqrt{3} - \sqrt{9 \cdot 3}$$

Perfect square factor

$$=4\sqrt{3}-\sqrt{9}\cdot\sqrt{3}$$

Use product property.

$$=4\sqrt{3}-3\sqrt{3}$$

Simplify.

$$=\sqrt{3}$$

Subtract like radicals.

1)
$$3\sqrt{6} - 4\sqrt{6}$$

2)
$$-3\sqrt{7} + 4\sqrt{7}$$

3)
$$-11\sqrt{21} - 11\sqrt{21}$$

4)
$$-9\sqrt{15} + 10\sqrt{15}$$

5)
$$-10\sqrt{7} + 12\sqrt{7}$$

6)
$$-3\sqrt{17} - 4\sqrt{17}$$

7)
$$-10\sqrt{11} - 11\sqrt{11}$$

8)
$$-2\sqrt{3} + 3\sqrt{27}$$

9)
$$2\sqrt{6} - 2\sqrt{24}$$

10)
$$2\sqrt{6} + 3\sqrt{54}$$

11)
$$-\sqrt{12} + 3\sqrt{3}$$

12)
$$3\sqrt{3} - \sqrt{27}$$

13)
$$3\sqrt{8} + 3\sqrt{2}$$

14)
$$-3\sqrt{6} + 3\sqrt{6}$$

(3) calculator

Simplifying Radical Expressions: Multiplying

(a) Multiply numbers that are BOTH OUTSIDE the radical.

Multiply numbers that are BOTH INSIDE the radical.

Simplify the expression

2 •
$$\sqrt{5} = _______$$

$$\sqrt{2} \cdot 5 =$$

$$2\sqrt{3} \cdot \sqrt{5} =$$

$$2\sqrt{3} \cdot 4\sqrt{5} =$$

1)
$$\sqrt{6} \cdot 4\sqrt{6}$$

2)
$$-\sqrt{5} \cdot \sqrt{20}$$

3)
$$-\sqrt{2} \cdot \sqrt{3}$$

4)
$$4\sqrt{8} \cdot \sqrt{2}$$

5)
$$\sqrt{12} \cdot \sqrt{15}$$

6)
$$\sqrt{5} \cdot -2\sqrt{5}$$

7)
$$-3\sqrt{5} \cdot \sqrt{20}$$

8)
$$\sqrt{15} \cdot 3\sqrt{5}$$

9)
$$\sqrt{9} \cdot \sqrt{3}$$

10)
$$-4\sqrt{8} \cdot \sqrt{10}$$

Simplifying Radical Expressions: Dividing and rationalizing the Denominator

$$\frac{6}{3} =$$

$$\frac{\sqrt{6}}{\sqrt{2}} = \underline{\hspace{1cm}}$$

$$\frac{\sqrt{6}}{2} =$$

$$\frac{\sqrt{6}}{2} = \frac{12\sqrt{6}}{2} = \frac{12\sqrt{6}}{2}$$

$$\frac{12\sqrt{6}}{\sqrt{2}} =$$

Simplest form for fractions with $\sqrt{}$

1. No perfect square factor under
$$\sqrt{}$$
 ex. $\sqrt{75} = \sqrt{25}\sqrt{3} = 5\sqrt{3}$

ex.
$$\sqrt{75} = \sqrt{25}\sqrt{3} = 5\sqrt{3}$$

2. No fractions under a
$$\sqrt{}$$

2. No fractions under a
$$\sqrt{}$$
 ex. $\sqrt{\frac{3}{4}} = \frac{\sqrt{3}}{\sqrt{4}} = \frac{\sqrt{3}}{2}$

3. No
$$\sqrt{}$$
 in a denominator

3. No
$$\sqrt{}$$
 in a denominator ex. $\frac{2}{\sqrt{3}} \bullet \frac{\sqrt{3}}{\sqrt{3}} = \frac{2\sqrt{3}}{\sqrt{9}} = \frac{2\sqrt{3}}{3}$

4. Must be reduced ex.
$$\frac{8\sqrt{5}}{2} = 4\sqrt{5}$$

11)
$$\frac{\sqrt{8}}{\sqrt{7}}$$

12)
$$\frac{7}{8\sqrt{7}}$$

$$13) \ \frac{\sqrt{2}}{\sqrt{6}}$$

14)
$$\frac{\sqrt{21}}{\sqrt{15}}$$

$$15) \ \frac{\sqrt{3}}{6\sqrt{7}}$$

16)
$$\frac{\sqrt{5}}{\sqrt{3}}$$

17)
$$\frac{\sqrt{15}}{3\sqrt{6}}$$

18)
$$\frac{\sqrt{8}}{2\sqrt{7}}$$

(5) calculator

Exit Ticket

ON THE LAST PAGE

(6) calculator

Homework

Simplify each radical expression. ODD PROBLEMS REQUIRED

1.
$$\sqrt{5} \sqrt{15}$$

2.
$$\sqrt{14} \sqrt{35}$$

3.
$$\sqrt{2}(\sqrt{3} - \sqrt{5})$$

4.
$$\sqrt{3} (\sqrt{27} - \sqrt{3})$$

5.
$$\sqrt{2} (\sqrt{6} + \sqrt{10})$$

6.
$$\sqrt{7} (3 - \sqrt{7})$$

7.
$$\sqrt{5} (3\sqrt{5} - 4\sqrt{3})$$

8.
$$\sqrt{y} (\sqrt{y} - \sqrt{5})$$

(6) calculator

Homework

☐ Simplify each radical expression. ODD PROBLEMS REQUIRED

21. $\sqrt{\frac{27}{16}}$

 $22. \quad \sqrt{\frac{14}{y^2}}$

23. $\sqrt{\frac{24}{25}}$

24. $\sqrt{\frac{7}{5}}$

25. $\sqrt{\frac{10}{7}}$

26. $\frac{2}{\sqrt{3}}$

27. $\frac{5}{\sqrt{10}}$

28. $\frac{6}{\sqrt{3}}$

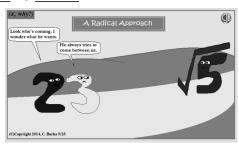
29. $\frac{2}{\sqrt{6}}$

15) $-3\sqrt{20} - \sqrt{5}$

16) $2\sqrt{45} - 2\sqrt{5}$

17) $3\sqrt{18} - 2\sqrt{2}$

18) $-3\sqrt{18} + 3\sqrt{8} - \sqrt{24}$


19) $3\sqrt{18} + 3\sqrt{12} + 2\sqrt{27}$

20) $-3\sqrt{5} - \sqrt{6} - \sqrt{5}$

7.1

Simplify each expression completely.

2.
$$\sqrt{14} \sqrt{35}$$

4.
$$\sqrt{3} (\sqrt{27} - \sqrt{3})$$

24.
$$\sqrt{\frac{7}{5}}$$

26.
$$\frac{2}{\sqrt{3}}$$

16)
$$2\sqrt{45} - 2\sqrt{5}$$

18)
$$-3\sqrt{18} + 3\sqrt{8} - \sqrt{24}$$

A perfect square is a number whose square root is an integer. Half of the first 300 perfect squares are listed for you. Fill in the other 15 perfect squares.

$$\sqrt{1}=1$$

because

$$1^2 = 1$$

$$\sqrt{256} = 16$$

because
$$16^2 = 256$$

$$\sqrt{}$$
 = _____ because _____ 2 = _____

= because ____ ² = ____

$$\sqrt{}$$
 = _____because ____² = _____

$$\sqrt{}$$
 = _____ because _____ 2 = _____

$$\sqrt{}$$
 = _____ because _____ 2 = _____

$$\sqrt{361} = 19$$
 because $19^2 = 361$

$$\sqrt{25} = 5 \qquad \text{because} \qquad 5^2 = 25$$

$$\sqrt{}$$
 = _____ because _____ 2 = _____

$$\sqrt{}$$
 = _____ because ____ 2 = _____

$$\sqrt{441} = 21$$
 because $21^2 = 441$

$$\sqrt{49} = 7$$
 because $7^2 = 49$

$$\sqrt{}$$
 = _____because _____2 = _____

$$\sqrt{} = \underline{}$$
 because $\underline{}^2 = \underline{}$

$$\sqrt{} = \underline{}$$
 because $\underline{}$ $^2 = \underline{}$

$$\sqrt{}$$
 = _____ because _____ 2 = _____

$$\sqrt{576} = 24$$
 because $24^2 = 576$

$$\sqrt{100} = 10$$
 because $10^2 = 100$

$$\sqrt{625} = 25$$
 because $25^2 = 625$

$$\sqrt{}$$
 = _____ because _____ 2 = _____

$$\sqrt{} = \underline{}$$
 because $\underline{}^2 = \underline{}$

$$\sqrt{144} = 12$$
 because $12^2 = 144$

$$\sqrt{729} = 27$$
 because $27^2 = 729$

$$\sqrt{}$$
 = _____ because _____ 2 = _____

$$\sqrt{784} = 28$$
 because $28^2 = 784$

$$\sqrt{196} = 14$$
 because $14^2 = 196$

$$\sqrt{}$$
 = _____because _____² = _____

$$\sqrt{15} = 225$$
 because $15^2 = 225$

$$\sqrt{900} = 30$$
 because $30^2 = 900$