Lesson 1 Problem Set

1. Shade the first 7 units of the tape diagram. Count by tenths to label the number line using a fraction and a decimal for each point. Circle the decimal that represents the shaded part.

\[0 \quad 0.1 \quad _ \quad 1\]

2. Write the total amount of water in fraction form and decimal form. Shade the last bottle to show the correct amount.

\[\frac{1}{10}\]

3. Write the total weight of the food on each scale in fraction form or decimal form.
4. Write the length of the bug in centimeters. (Drawing is not to scale.)

Fraction form: __________ cm
Decimal form: __________ cm

How far does the bug need to walk before its nose is at the 1 cm mark? __________ cm

5. Fill in the blank to make the sentence true in both fraction form and decimal form.
 a. \(\frac{8}{10} \) cm + ______ cm = 1 cm
 0.8 cm + ______ cm = 1.0 cm
 b. \(\frac{2}{10} \) cm + ______ cm = 1 cm
 0.2 cm + ______ cm = 1.0 cm
 c. \(\frac{6}{10} \) cm + ______ cm = 1 cm
 0.6 cm + ______ cm = 1.0 cm

6. Match each amount expressed in unit form to its equivalent fraction and decimal forms.

<table>
<thead>
<tr>
<th>Unit Form</th>
<th>Fraction</th>
<th>Decimal</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 tenths</td>
<td>(\frac{3}{10})</td>
<td>0.3</td>
</tr>
<tr>
<td>5 tenths</td>
<td>(\frac{5}{10})</td>
<td>0.5</td>
</tr>
<tr>
<td>6 tenths</td>
<td>(\frac{6}{10})</td>
<td>0.9</td>
</tr>
<tr>
<td>9 tenths</td>
<td>(\frac{9}{10})</td>
<td>0.9</td>
</tr>
<tr>
<td>2 tenths</td>
<td>(\frac{2}{10})</td>
<td>0.2</td>
</tr>
</tbody>
</table>
Lesson 2 Problem Set

Name ____________________________ Date ________________

1. For each length given below, draw a line segment to match. Express each measurement as an equivalent mixed number.
 a. 2.6 cm
 b. 3.4 cm
 c. 3.7 cm
 d. 4.2 cm
 e. 2.5 cm

2. Write the following as equivalent decimals. Then, model and rename the number as shown below.
 a. 2 ones and 6 tenths =
 \[
 \begin{array}{c|c|c|c|c|c}
 \hline
 \text{Line segments} & \text{Line segments} & \text{Line segments} & \text{Line segments} & \text{Line segments} \\
 \hline
 \end{array}
 \]
 \[
 2 \begin{array}{c}
 \frac{6}{10} \end{array} = 2 \begin{array}{c} 0.6 \end{array} = 2.6
 \]
Lesson 2 Problem Set

b. 4 ones and 2 tenths = __________

\[
\begin{array}{cccc}
| & | & | & |
|---|---|---|---|
| & & & |
\end{array}
\]

How much more is needed to get to 5? _________________

c. \(3 \frac{4}{10} = \) __________

\[
\begin{array}{cccc}
| & | & | & |
|---|---|---|---|
| & & & |
\end{array}
\]

d. \(2 \frac{5}{10} = \) __________

\[
\begin{array}{cccc}
| & | & | & |
|---|---|---|---|
| & & & |
\end{array}
\]

How much more is needed to get to 5? _________________

e. \(37 \frac{1}{10} = \) __________

\[
\begin{array}{cccc}
| & | & | & |
|---|---|---|---|
| & & & |
\end{array}
\]

How much more is needed to get to 5? _________________
Lesson 3: Represent mixed numbers with units of tens, ones, and tenths with number disks, on the number line, and in expanded form.

Date: 10/27/14

Name ____________________________ Date __________________

1. Circle groups of tenths to make as many ones as possible.

 a. How many tenths in all?

 Write and draw the same number using ones and tenths.

 There are _________ tenths.

 Decimal Form: _________

 How much more is needed to get to 3? _________

 b. How many tenths in all?

 Write and draw the same number using ones and tenths.

 There are _________ tenths.

 Decimal Form: _________

 How much more is needed to get to 4? _________

2. Draw disks to represent each number using tens, ones, and tenths. Then, show the expanded form of the number in fraction form and decimal form as shown. The first one has been completed for you.

 a. 4 tens 2 ones 6 tenths

 Fraction Expanded Form
 \[
 (4 \times 10) + (2 \times 1) + (6 \times \frac{1}{10}) = 42 \frac{6}{10}
 \]

 Decimal Expanded Form
 \[
 (4 \times 10) + (2 \times 1) + (6 \times 0.1) = 42.6
 \]

 b. 1 ten 7 ones 5 tenths
Lesson 3 Problem Set

3. Complete the chart.

<table>
<thead>
<tr>
<th>Point</th>
<th>Number Line</th>
<th>Decimal Form</th>
<th>Mixed Number (ones and fraction form)</th>
<th>Expanded Form (fraction or decimal form)</th>
<th>How much to get to the next one?</th>
</tr>
</thead>
<tbody>
<tr>
<td>a.</td>
<td></td>
<td>3 (\frac{9}{10})</td>
<td></td>
<td></td>
<td>0.1</td>
</tr>
<tr>
<td>b.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c.</td>
<td></td>
<td></td>
<td>(7 \times 10) + (4 \times 1) + (7 \times \frac{1}{10})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>d.</td>
<td></td>
<td>22 (\frac{2}{10})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e.</td>
<td></td>
<td></td>
<td></td>
<td>(8 \times 10) + (8 \times 0.1)</td>
<td></td>
</tr>
</tbody>
</table>
Lesson 4 Problem Set

Name ____________________________ Date __________________

1. a. What is the length of the shaded part of the meter stick in centimeters?

```
1 meter
```

b. What fraction of a meter is 1 centimeter?

c. In fraction form, express the length of the shaded portion of the meter stick.

```
1 meter
```

d. In decimal form, express the length of the shaded portion of the meter stick.

e. What fraction of a meter is 10 centimeters?

2. Fill in the blanks.
 a. \(\frac{1}{10} \) tenth = ____ hundredths
 b. \(\frac{1}{10} \) m = \(\frac{1}{100} \) m
 c. \(\frac{2}{10} \) m = \(\frac{20}{100} \) m

3. Use the model to add the shaded parts as shown. Write a number bond with the total written in decimal form and the parts written as fractions. The first one has been done for you.

```
1 meter
```

\[\frac{1}{10} \text{ m} + \frac{3}{100} \text{ m} = \frac{13}{100} \text{ m} = 0.13 \text{ m} \]
Lesson 4 Problem Set

4. On each meter stick, shade in the amount shown. Then, write the equivalent decimal.

a. \(\frac{8}{10} \text{ m} \)

b. \(\frac{7}{100} \text{ m} \)

c. \(\frac{19}{100} \text{ m} \)

5. Draw a number bond, pulling out the tenths from the hundredths as in Problem 3. Write the total as the equivalent decimal.

a. \(\frac{19}{100} \text{ m} \)

b. \(\frac{28}{100} \text{ m} \)

c. \(\frac{77}{100} \text{ m} \)

d. \(\frac{94}{100} \text{ m} \)
Lesson 5 Problem Set

Name ___________________________ Date ______________

1. Find the equivalent fraction using multiplication or division. Shade the area models to show the equivalency. Record it as a decimal.

 a. \(\frac{3}{10} \times \frac{10}{10} = \frac{30}{100} \)

 b. \(\frac{50}{100} \div \frac{10}{10} = \frac{5}{10} \)

2. Complete the number sentences. Shade the equivalent amount on the area model, drawing horizontal lines to make hundredths.

 a. 37 hundredths = ____ tenths + ____ hundredths
 Fraction form: ______
 Decimal form: ______

 b. 75 hundredths = ____ tenths + ____ hundredths
 Fraction form: ______
 Decimal form: ______

3. Circle hundredths to compose as many tenths as you can. Complete the number sentences. Represent each with a number bond as shown.

 a. ______ hundredths = _____ tenth + _____ hundredths
Lesson 5 Problem Set

4. Use both tenths and hundredths number disks to represent each number. Write the equivalent number in decimal, fraction, and unit form.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
</table>
| a. | \(\frac{3}{100} = 0.\) _____
| | _____ hundredths |
| b. | \(\frac{15}{100} = 0.\) _____
| | _____ tenth _____ hundredths |
| c. | _____ = 0.72
| | _____ hundredths |
| d. | _____ = 0.80
| | _____ tenths |
| e. | _____ = 0._____ 7 tenths 2 hundredths |
| f. | _____ = 0._____ 80 hundredths |

b. \(\begin{array}{c|c|c|c}
0.01 & 0.01 & 0.01 & 0.01 \\
0.01 & 0.01 & 0.01 & 0.01 \\
0.01 & 0.01 & 0.01 & 0.01 \\
0.01 & 0.01 & 0.01 & 0.01 \\
\hline
\end{array} \) _____ hundredths = _____ tenths + _____ hundredths
Lesson 6 Problem Set

Name ________________________________ Date ________________

1. Use a protractor to measure the angles, and then record the measurements in degrees.
 a. ________________________________
 b. ________________________________
 c. ________________________________
 d. ________________________________
Lesson 6: Use varied protractors to distinguish angle measure from length measurement.

Date: 9/14/14

© 2014 Common Core, Inc. Some rights reserved. commoncore.org

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
2. a. Use three different-size protractors to measure the angle. Extend the lines as needed using a straightedge.

 Protractor #1: _______ °
 Protractor #2: _______ °
 Protractor #3: _______ °

 b. What do you notice about the measurement of the above angle using each of the protractors?

3. Use a protractor to measure each angle. Extend the length of the segments as needed. When you extend the segments, does the angle measure stay the same? Explain how you know.

 a.

 b.
Construct angles that measure the given number of degrees. For Problems 1–4, use the ray shown as one of the rays of the angle with its endpoint as the vertex of the angle. Draw an arc to indicate the angle that was measured.

1. 30°
2. 65°
3. 115°
4. 135°
Lesson 7: Measure and draw angles. Sketch given angle measures, and verify with a protractor.

Date: 9/14/14

5. 5°
6. 175°

7. 27°
8. 117°

9. 48°
10. 132°
1. Joe, Steve, and Bob stood in the middle of the yard and faced the house. Joe turned 90° to the right. Steve turned 180° to the right. Bob turned 270° to the right. Name the object that each boy is now facing.

 Joe __________________
 Steve __________________
 Bob ___________________

2. Monique looked at the clock at the beginning of class and at the end of class. How many degrees did the minute hand turn from the beginning of class until the end?

 Beginning End

3. The skater jumped into the air and did a 360. What does that mean?

4. Mr. Martin drove away from his house without his wallet. He did a 180. Where is he heading now?

 House Store
5. John turned the knob of the shower 270° to the right. Draw a picture showing the position of the knob after he turned it.

Before | After

6. Barb used her scissors to cut out a coupon from the newspaper. How many quarter-turns does she need to turn the paper in order to stay on the lines?

7. How many quarter-turns does the picture need to be rotated in order for it to be upright?

8. Meredith faced north. She turned 90° to the right, and then 180° more. In which direction is she now facing?
Name ___ Date ________________

1. Complete the table.

<table>
<thead>
<tr>
<th>Pattern block</th>
<th>Total number that fit around 1 vertex</th>
<th>One interior angle measures...</th>
<th>Sum of the angles around a vertex</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. 🟢</td>
<td></td>
<td>360° ÷ _____ = ____</td>
<td>_____ + _____ + _____ + _____ = 360°</td>
</tr>
<tr>
<td>b. 🟢</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. 🟢</td>
<td></td>
<td></td>
<td>_____ + _____ + _____ = 360°</td>
</tr>
<tr>
<td>d. 🟢</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Acute angle)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e. 🟢</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Obtuse angle)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f. 🟢</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Acute angle)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2. Find the measurements of the angles indicated by the arcs.

<table>
<thead>
<tr>
<th>Pattern blocks</th>
<th>Angle measure</th>
<th>Addition sentence</th>
</tr>
</thead>
<tbody>
<tr>
<td>a.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>b.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>E</td>
</tr>
<tr>
<td>c.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>H</td>
<td>I</td>
</tr>
</tbody>
</table>

3. Use two or more pattern blocks to figure out the measurements of the angles indicated by the arcs.

<table>
<thead>
<tr>
<th>Pattern blocks</th>
<th>Angle measure</th>
<th>Addition sentence</th>
</tr>
</thead>
<tbody>
<tr>
<td>a.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>b.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>c.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>R</td>
<td></td>
</tr>
</tbody>
</table>
Write an equation and solve for the measure of $\angle x$. Verify the measurement using a protractor.

1. $\angle CBA$ is a right angle.

2. $\angle GFE$ is a right angle.

3. $\angle IJK$ is a straight angle.

4. $\angle MNO$ is a straight angle.
Solve for the unknown angle measurements. Write an equation to solve.

5. Solve for the measurement of $\angle TRU$.
 $\angle QRS$ is a straight angle.

6. Solve for the measurement of $\angle ZYV$.
 $\angle XYZ$ is a straight angle.

7. In the following figure, $ACDE$ is a rectangle. Without using a protractor, determine the measurement of $\angle DEB$. Write an equation that could be used to solve the problem.

8. Complete the following directions in the space to the right.
 b. Plot a point O somewhere between points M and N.
 c. Plot a point P, which is not on \overrightarrow{MN}.
 d. Draw \overrightarrow{OP}.
 e. Find the measure of $\angle MOP$ and $\angle NOP$.
 f. Write an equation to show that the angles add to the measure of a straight angle.
Lesson 11 Problem Set

Write an equation, and solve for the unknown angle measurements numerically.

1. \[
______ \degree + 20\degree = 360\degree \\
\]
 \[
d\degree = ______ \degree
\]

2. \[
______ \degree + ______ \degree = 360\degree
\]
 \[
c\degree = ______ \degree
\]

3. \[
______ \degree + ______ \degree + ______ \degree = ______ \degree
\]
 \[
e\degree = ______ \degree
\]

4. \[
______ \degree + ______ \degree + ______ \degree = ______ \degree
\]
 \[
f\degree = ______ \degree
Lesson 11: Use the addition of adjacent angle measures to solve problems using a symbol for the unknown angle measure.

5. \(O \) is the intersection of \(\overline{AB} \) and \(\overline{CD} \).
\(\angle DOA \) is 160° and \(\angle AOC \) is 20°.
\[x^\circ = \underline{\hspace{1cm}} \quad y^\circ = \underline{\hspace{1cm}} \]

6. \(O \) is the intersection of \(\overline{RS} \) and \(\overline{TU} \).
\(\angle TOS \) is 125°.
\[g^\circ = \underline{\hspace{1cm}} \quad h^\circ = \underline{\hspace{1cm}} \quad i^\circ = \underline{\hspace{1cm}} \]

7. \(O \) is the intersection of \(\overline{WX}, \overline{YZ}, \) and \(\overline{UO} \).
\(\angle XOZ \) is 36°.
\[k^\circ = \underline{\hspace{1cm}} \quad m^\circ = \underline{\hspace{1cm}} \quad n^\circ = \underline{\hspace{1cm}} \]
Lesson 12: Recognize lines of symmetry for given two-dimensional figures.

Identify line-symmetric figures, and draw lines of symmetry.

Date: 9/15/14

1. Circle the figures that have a correct line of symmetry drawn.

 a.
 b.
 c.
 d.

2. Find and draw all lines of symmetry for the following figures. Write the number of lines of symmetry that you found in the blank underneath the shape.

 a.
 b.
 c.
 d.
 e.
 f.
 g.
 h.
 i.

© 2014 Common Core, Inc. Some rights reserved. commoncore.org

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
3. Half of each figure below has been drawn. Use the line of symmetry, represented by the dashed line, to complete each figure.

![Figure a)

![Figure b)

![Figure c)

![Figure d)

4. The figure below is a circle. How many lines of symmetry does the figure have? Explain.

![Circle]
1. Classify each triangle by its side lengths and angle measurements. Circle the correct names.

<table>
<thead>
<tr>
<th>Classify Using Side Lengths</th>
<th>Classify Using Angle Measurements</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Equilateral Isosceles Scalene</td>
<td>Acute Right Obtuse</td>
</tr>
<tr>
<td>b. Equilateral Isosceles Scalene</td>
<td>Acute Right Obtuse</td>
</tr>
<tr>
<td>c. Equilateral Isosceles Scalene</td>
<td>Acute Right Obtuse</td>
</tr>
<tr>
<td>d. Equilateral Isosceles Scalene</td>
<td>Acute Right Obtuse</td>
</tr>
</tbody>
</table>

2. $\triangle ABC$ has one line of symmetry as shown. What does this tell you about the measures of $\angle A$ and $\angle C$?

3. $\triangle DEF$ has three lines of symmetry as shown.
 a. How can the lines of symmetry help you to figure out which angles are equal?
 b. $\triangle DEF$ has a perimeter of 30 cm. Label the side lengths.
4. Use a ruler to connect points to form two other triangles. Use each point only once. None of the triangles may overlap. One or two points will be unused. Name and classify the three triangles below. The first one has been done for you.

<table>
<thead>
<tr>
<th>Name the Triangles Using Vertices</th>
<th>Classify by Side Length</th>
<th>Classify by Angle Measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΔFJK</td>
<td>Scalene</td>
<td>Obtuse</td>
</tr>
</tbody>
</table>

5. a. List three points from the grid above that, when connected by segments, do not result in a triangle.

b. Why didn’t the three points you listed result in a triangle when connected by segments?

6. Can a triangle have two right angles? Explain.
1. Draw triangles that fit the following classifications. Use a ruler and protractor. Label the side lengths and angles.

 a. Right and isosceles
 b. Obtuse and scalene
 c. Acute and scalene
 d. Acute and isosceles

2. Draw all possible lines of symmetry in the triangles above. Explain why some of the triangles do not have lines of symmetry.
Are the following statements true or false? Explain using pictures or words.

3. If ΔABC is an equilateral triangle, BC must be 2 cm. True or False?

4. A triangle cannot have one obtuse angle and one right angle. True or False?

5. ΔEFG can be described as a right triangle and an isosceles triangle. True or False?

6. An equilateral triangle is isosceles. True or False?

Extension: In ΔHIJ, a = b. True or False?
Construct the figures with the given attributes. Name the shape you created. Be as specific as possible. Use extra blank paper as needed.

1. Construct quadrilaterals with at least one set of parallel sides.

2. Construct a quadrilateral with two sets of parallel sides.

3. Construct a parallelogram with four right angles.

4. Construct a rectangle with all sides the same length.
5. Use the word bank to name each shape, being as specific as possible.

<table>
<thead>
<tr>
<th>Parallelogram</th>
<th>Trapezoid</th>
<th>Rectangle</th>
<th>Square</th>
</tr>
</thead>
</table>

a. [Diagram of a parallelogram]

b. [Diagram of a trapezoid]

c. [Diagram of a rectangle]

d. [Diagram of a square]

6. Explain the attribute that makes a square a special rectangle.

7. Explain the attribute that makes a rectangle a special parallelogram.

8. Explain the attribute that makes a parallelogram a special trapezoid.
Lesson 16 Problem Set

1. On the grid paper, draw at least one quadrilateral to fit the description. Use the given segment as one segment of the quadrilateral. Name the figure you drew using one of the terms below.

<table>
<thead>
<tr>
<th>Parallelogram</th>
<th>Trapezoid</th>
<th>Rectangle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Square</td>
<td></td>
<td>Rhombus</td>
</tr>
</tbody>
</table>

a. A quadrilateral that has at least one pair of parallel sides.

[Grid with a line drawn to form a parallelogram]

b. A quadrilateral that has four right angles.

[Grid with a line drawn to form a rectangle]

c. A quadrilateral that has two pairs of parallel sides.

[Grid with a line drawn to form a rhombus]

d. A quadrilateral that has at least one pair of perpendicular sides and at least one pair of parallel sides.

[Grid with a line drawn to form a square]
Lesson 16 Problem Set

2. On the grid paper, draw at least one quadrilateral to fit the description. Use the given segment as one segment of the quadrilateral. Name the figure you drew using one of the terms below.

<table>
<thead>
<tr>
<th>Parallelogram</th>
<th>Trapezoid</th>
<th>Rectangle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Square</td>
<td></td>
<td>Rhombus</td>
</tr>
</tbody>
</table>

a. A quadrilateral that has two sets of parallel sides.

b. A quadrilateral that has four right angles.

3. Explain the attributes that make a rhombus different from a rectangle.

4. Explain the attribute that makes a square different from a rhombus.
1. Shade the first 4 units of the tape diagram. Count by tenths to label the number line using a fraction and a decimal for each point. Circle the decimal that represents the shaded part.

 \[
 0 \quad 0.1 \quad 0.2 \quad 0.3 \quad 0.4 \quad 0.5 \quad 0.6 \quad 0.7 \quad 0.8 \quad 0.9 \quad 1
 \]

 \[
 \frac{1}{10}
 \]

2. Write the total amount of water in fraction form and decimal form. Shade the last bottle to show the correct amount.

 \(1 \text{ L} = \frac{1}{1} \text{ L}\)
 \(1 \text{ L} = \frac{1}{1} \text{ L}\)
 \(1 \text{ L} = \frac{1}{1} \text{ L}\)

 \(L = 0.3 \text{ L}\)

3. Write the total weight of the food on each scale in fraction form or decimal form.

 \[
 \frac{6}{10} \text{ kg}
 \]
Lesson 1 Homework

4. Write the length of the bug in centimeters. (Drawing is not to scale.)

 Fraction form: __________ cm
 Decimal form: __________ cm

 If the bug walks 0.5 cm farther, where will its nose be? __________ cm

5. Fill in the blank to make the sentence true in both fraction and decimal form.

 a. \(\frac{4}{10} \) cm + _____ cm = 1 cm
 0.4 cm + _____ cm = 1.0 cm
 b. \(\frac{3}{10} \) cm + _____ cm = 1 cm
 0.3 cm + _____ cm = 1.0 cm
 c. \(\frac{8}{10} \) cm + _____ cm = 1 cm
 0.8 cm + _____ cm = 1.0 cm

6. Match each amount expressed in unit form to its equivalent fraction and decimal.

 | 2 tenths | \(\frac{4}{10} \) | 0.4 |
 | 4 tenths | \(\frac{7}{10} \) | 0.6 |
 | 6 tenths | \(\frac{5}{10} \) | 0.2 |
 | 7 tenths | \(\frac{2}{10} \) | 0.5 |
 | 5 tenths | \(\frac{6}{10} \) | 0.7 |
Lesson 2 Homework

Name _____________________________ Date ___________________

1. For each length given below, draw a line segment to match. Express each measurement as an equivalent mixed number.
 a. 2.6 cm
 b. 3.5 cm
 c. 1.7 cm
 d. 4.3 cm
 e. 2.2 cm

2. Write the following in decimal form. Then, model and rename the number as shown below.
 a. 2 ones and 4 tenths = __________

 \[
 \begin{array}{c|c|c|c|c}
 \hline
 \text{Unit}\text{-}Fractions & \text{Value}\text{-}Fractions & \text{Pictorial}\text{-}Fractions & \text{Decimal}\text{-}Value \\
 \hline
 \text{2}\text{-}\frac{4}{10} & \text{2}\text{.}\text{4} & \text{2}\text{.}\text{4} & \text{2}\text{.}\text{4} \\
 \hline
 \end{array}
 \]

 \[
 2 \frac{4}{10} = 2 + \frac{4}{10} = 2 + 0.4 = 2.4
 \]
Lesson 2: Use metric measurement and area models to represent tenths as fractions greater than 1 and decimal numbers.

Date: 10/27/14

b. 3 ones and 8 tenths = __________

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

How much more is needed to get to 5? _________________

c. \(4\frac{1}{10} = __________\)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

d. \(1\frac{4}{10} = __________\)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

How much more is needed to get to 5? _________________

e. \(33\frac{1}{10} = __________\)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

How much more is needed to get to 5? _________________
Lesson 3 Homework

1. Circle groups of tenths to make as many ones as possible.

a. How many tenths in all? Write and draw the same number using ones and tenths.

\[0.1 \quad 0.1 \]

There are ________ tenths.

Decimal Form: ________

How much more is needed to get to 2? ________

b. How many tenths in all? Write and draw the same number using ones and tenths.

\[0.1 \quad 0.1 \]

There are ________ tenths.

Decimal Form: ________

How much more is needed to get to 3? ________

2. Draw disks to represent each number using tens, ones, and tenths. Then, show the expanded form of the number in fraction form and decimal form as shown. The first one has been completed for you.

a. 3 tens 4 ones 3 tenths

\[10 \quad 10 \quad 10 \quad 1 \quad 1 \quad 1 \quad 1 \quad 0.1 \quad 0.1 \quad 0.1 \]

Fraction Expanded Form

\[(3 \times 10) + (4 \times 1) + (3 \times \frac{1}{10}) = 34 \frac{3}{10}\]

Decimal Expanded Form

\[(3 \times 10) + (4 \times 1) + (3 \times 0.1) = 34.3\]

b. 5 tens 3 ones 7 tenths

\[10 \quad 10 \quad 10 \quad 1 \quad 1 \quad 1 \quad 0.1 \quad 0.1 \quad 0.1 \]

Fraction Expanded Form

\[(5 \times 10) + (3 \times 1) + (7 \times \frac{1}{10}) = 53 \frac{7}{10}\]

Decimal Expanded Form

\[(5 \times 10) + (3 \times 1) + (7 \times 0.1) = 53.7\]
Lesson 3 Homework

3. Complete the chart.

<table>
<thead>
<tr>
<th>Point</th>
<th>Number Line</th>
<th>Decimal Form</th>
<th>Mixed Number (ones and fraction form)</th>
<th>Expanded Form (fraction or decimal form)</th>
<th>How much to get to the next one?</th>
</tr>
</thead>
<tbody>
<tr>
<td>a.</td>
<td></td>
<td></td>
<td>$4 \frac{6}{10}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b.</td>
<td></td>
<td></td>
<td>0.5</td>
<td></td>
<td>0.5</td>
</tr>
<tr>
<td>c.</td>
<td></td>
<td></td>
<td>$(6 \times 10) + (3 \times 1) + (6 \times \frac{1}{10})$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>d.</td>
<td></td>
<td></td>
<td>$71 \frac{3}{10}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>e.</td>
<td></td>
<td></td>
<td>$(9 \times 10) + (9 \times 0.1)$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Lesson 4 Homework

1. a. What is the length of the shaded part of the meter stick in centimeters?

b. What fraction of a meter is 3 centimeters?

c. In fraction form, express the length of the shaded portion of the meter stick.

d. In decimal form, express the length of the shaded portion of the meter stick.

e. What fraction of a meter is 30 centimeters?

2. Fill in the blanks.

a. 5 tenths = ____ hundredths

b. \(\frac{5}{10} \) m = \(\frac{50}{100} \) m

c. \(\frac{4}{10} \) m = \(\frac{40}{100} \) m

3. Use the model to add the shaded parts as shown. Write a number bond with the total written in decimal form and the parts written as fractions. The first one has been done for you.

\[\frac{1}{10} \text{ m} + \frac{3}{100} \text{ m} = \frac{13}{100} \text{ m} = 0.13 \text{ m} \]
Lesson 4 Homework

4. On each meter stick, shade in the amount shown. Then, write the equivalent decimal.

 a. \(\frac{9}{10} \) m

 b. \(\frac{15}{100} \) m

 c. \(\frac{41}{100} \) m

5. Draw a number bond, pulling out the tenths from the hundredths, as in Problem 3 of the Homework. Write the total as the equivalent decimal.

 a. \(\frac{23}{100} \) m

 b. \(\frac{38}{100} \) m

 c. \(\frac{82}{100} \)

 d. \(\frac{76}{100} \)
Lesson 5 Homework

Name ________________________________ Date ____________________

1. Find the equivalent fraction using multiplication or division. Shade the area models to show the equivalency. Record it as a decimal.

 a. \[
 \frac{4 \times _}{10 \times _} = \frac{100}{100}
 \]

 b. \[
 \frac{60 \div _}{100 \div _} = \frac{10}{10}
 \]

2. Complete the number sentences. Shade the equivalent amount on the area model, drawing horizontal lines to make hundredths.

 a. 36 hundredths = _____ tenths + ____ hundredths

 Decimal form: __________

 Fraction form: __________

 b. 82 hundredths = ____ tenths + ____ hundredths

 Decimal form: __________

 Fraction form: __________

3. Circle hundredths to compose as many tenths as you can. Complete the number sentences. Represent each with a number bond as shown.

 a.

 _____ hundredths = _____ tenth + _____ hundredths

 b.

 _____ hundredths = _____ tenth + _____ hundredths
Lesson 5 Homework

b. Use both tenths and hundredths number disks to represent each number. Write the equivalent number in decimal, fraction, and unit form.

a. \(\frac{4}{100} = 0. \underline{_____} \)

 _____ hundredths

b. \(\frac{13}{100} = 0. \underline{_____} \)

 _____ tenth _____ hundredths

c. \(\underline{0.41} = 0.41 \)

 _____ hundredths

d. \(\underline{0.90} = 0.90 \)

 _____ tenths

e. \(\underline{6 \text{ tenths} 3 \text{ hundredths}} = 0. \underline{_____} \)

f. \(\underline{90 \text{ hundredths}} = 0. \underline{_____} \)

___ hundredths = _____ tenths + _____ hundredths

4. Use both tenths and hundredths number disks to represent each number. Write the equivalent number in decimal, fraction, and unit form.
1. Use a protractor to measure the angles, and then record the measurements in degrees.

 a.

 b.

 c.

 d.

© 2014 Common Core, Inc. Some rights reserved. commoncore.org

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
Lesson 6: Use varied protractors to distinguish angle measure from length measurement.

Date: 9/14/14

e.

f.

g.

h.

i.

j.
2. Using the green and red circle cutouts from today’s lesson, explain to someone at home how the cutouts can be used to show that the angle measures are the same even though the circles are different sizes. Write words to explain what you told him or her.

3. Use a protractor to measure each angle. Extend the length of the segments as needed. When you extend the segments, does the angle measure stay the same? Explain how you know.
 a.

 ![Diagram of angle BAC]

 b.

 ![Diagram of angle DEF]
Construct angles that measure the given number of degrees. For Problems 1–4, use the ray shown as one of the rays of the angle with its endpoint as the vertex of the angle. Draw an arc to indicate the angle that was measured.

1. 25°
2. 85°
3. 140°
4. 83°
Lesson 7: Measure and draw angles. Sketch given angle measures, and verify with a protractor.

5. 108°
6. 72°
7. 25°
8. 155°
9. 45°
10. 135°
1. Jill, Shyan, and Barb stood in the middle of the yard and faced the barn. Jill turned 90° to the right. Shyan turned 180° to the left. Barb turned 270° to the left. Name the object that each girl is now facing.

- Jill ____________________
- Shyan __________________
- Barb _________________

2. Allison looked at the clock at the beginning of class and at the end of class. How many degrees did the minute hand turn from the beginning of class until the end?

3. The snowboarder went off a jump and did a 180. In which direction was the snowboarder facing when he landed? How do you know?

4. As she drove down the icy road, Mrs. Campbell slammed on her brakes. Her car did a 360. Explain what happened to Mrs. Campbell’s car.
5. Jonah turned the knob of the stove two quarter-turns. Draw a picture showing the position of the knob after he turned it.

Before

After

6. Betsy used her scissors to cut out a coupon from the newspaper. How many total quarter-turns will she need to rotate the paper in order to cut out the entire coupon?

SAVE

$1.00

7. How many quarter-turns does the picture need to be rotated in order for it to be upright?

8. David faced north. He turned 180° to the right, and then 270° to the left. In which direction is he now facing?
Name ___________________________ Date ___________________

Sketch two different ways to compose the given angles using two or more pattern blocks.
Write an addition sentence to show how you composed the given angle.

1. Points A, B, and C form a straight line.

\[180^\circ = \rule{2cm}{0.1mm} \quad 180^\circ = \rule{2cm}{0.1mm} \]

2. $\angle DEF = 90^\circ$

\[90^\circ = \rule{2cm}{0.1mm} \quad 90^\circ = \rule{2cm}{0.1mm} \]
3. \(\angle GHI = 120^\circ \)

\[
\begin{align*}
120^\circ &= \underline{\quad} \\
120^\circ &= \underline{\quad}
\end{align*}
\]

4. \(x^\circ = 270^\circ \)

\[
\begin{align*}
270^\circ &= \underline{\quad} \\
270^\circ &= \underline{\quad}
\end{align*}
\]

5. Micah built the following shape with his pattern blocks. Write an addition sentence for each angle indicated by an arc and solve. The first one is done for you.

\[
\begin{align*}
a. \ y^\circ &= 120^\circ + 90^\circ \\
&= 210^\circ \\
b. \ z^\circ &= \underline{\quad} \\
&= \underline{\quad} \\
c. \ x^\circ &= \underline{\quad} \\
&= \underline{\quad}
\end{align*}
\]
Lesson 10: Use the addition of adjacent angle measures to solve problems using a symbol for the unknown angle measure.

Write an equation and solve for the measurement of $\angle x$. Verify the measurement using a protractor.

1. $\angle DCB$ is a right angle.

2. $\angle HGF$ is a right angle.

3. $\angle JKL$ is a straight angle.

4. $\angle PQR$ is a straight angle.

Equations and Measurements

1. $\angle DCB$ is a right angle.

 $35^\circ + x^\circ = 90^\circ$

 $x^\circ = ___$

2. $\angle HGF$ is a right angle.

 $62^\circ + x^\circ = ___$

 $x^\circ = ___$

3. $\angle JKL$ is a straight angle.

 $145^\circ + x^\circ = 180^\circ$

 $x^\circ = ___$

4. $\angle PQR$ is a straight angle.

 $16^\circ + x^\circ = ___$

 $x^\circ = ___$
Write an equation and solve for the unknown angle measurements.

5. Solve for the measurement of $\angle USW$.
$\angle RST$ is a straight angle.

6. Solve for the measurement of $\angle OML$.
$\angle LMN$ is a straight angle.

7. In the following figure, $DEFH$ is a rectangle. Without using a protractor, determine the measurement of $\angle GEF$. Write an equation that could be used to solve the problem.

8. Complete the following directions in the space to the right.

a. Draw 2 points: Q and R. Using a straightedge, draw \overrightarrow{QR}.

b. Plot a point S somewhere between points Q and R.

c. Plot a point T, which is not on \overrightarrow{QR}.

d. Draw \overrightarrow{TS}.

e. Find the measure of $\angle QST$ and $\angle RST$.

f. Write an equation to show that the angles add to the measure of a straight angle.
Write an equation, and solve for the unknown angle measurements numerically.

1. \[_____^\circ + 320^\circ = 360^\circ \]
 \[a^\circ = _____^\circ \]

2. \[_____^\circ + _____^\circ = 360^\circ \]
 \[b^\circ = _____^\circ \]

3. \[_____^\circ + _____^\circ + _____^\circ = _____^\circ \]
 \[c^\circ = _____^\circ \]

4. \[_____^\circ + _____^\circ + _____^\circ = _____^\circ \]
 \[d^\circ = _____^\circ \]
Write an equation and solve for the unknown angles numerically.

5. O is the intersection of AB and CD.
 \[\angle COB \text{ is } 145^\circ \text{ and } \angle AOC \text{ is } 35^\circ. \]
 \[e^\circ = \underline{} \quad f^\circ = \underline{} \]

6. O is the intersection of QR and ST.
 \[\angle QOS \text{ is } 55^\circ. \]
 \[g^\circ = \underline{} \quad h^\circ = \underline{} \quad i^\circ = \underline{} \]

7. O is the intersection of UV, WX, and YO.
 \[\angle VOX \text{ is } 46^\circ. \]
 \[j^\circ = \underline{} \quad k^\circ = \underline{} \quad m^\circ = \underline{} \]
Lesson 12 Homework

Name ____________________________ Date ________________

1. Circle the figures that have a correct line of symmetry drawn.
 a.
 b.
 c.
 d.

2. Find and draw all lines of symmetry for the following figures. Write the number of lines of symmetry that you found in the blank underneath the shape.
 a. ________
 b. ________
 c. ________
 d. ________
 e. ________
 f. ________
 g. ________
 h. ________
 i. ________
3. Half of each figure below has been drawn. Use the line of symmetry, represented by the dashed line, to complete each figure.

4. Is there another shape that has the same number of lines of symmetry as a circle? Explain.
Lesson 13 Homework

1. Classify each triangle by its side lengths and angle measurements. Circle the correct names.

<table>
<thead>
<tr>
<th></th>
<th>Classify Using Side Lengths</th>
<th>Classify Using Angle Measurements</th>
</tr>
</thead>
<tbody>
<tr>
<td>a.</td>
<td></td>
<td>Equilateral Isosceles Scalene</td>
</tr>
<tr>
<td>b.</td>
<td></td>
<td>Equilateral Isosceles Scalene</td>
</tr>
<tr>
<td>c.</td>
<td></td>
<td>Equilateral Isosceles Scalene</td>
</tr>
<tr>
<td>d.</td>
<td></td>
<td>Equilateral Isosceles Scalene</td>
</tr>
</tbody>
</table>

2. a. \(\Delta ABC\) has one line of symmetry as shown. Is the measure of \(\angle A\) greater than, less than, or equal to \(\angle C\)?

![Triangle](image)

b. \(\Delta DEF\) is scalene. What do you observe about its angles? Explain.

![Triangle](image)
3. Use a ruler to connect points to form two other triangles. Use each point only once. None of the triangles may overlap. Two points will be unused. Name and classify the three triangles below.

<table>
<thead>
<tr>
<th>Name the Triangles Using Vertices</th>
<th>Classify by Side Length</th>
<th>Classify by Angle Measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΔIJK</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4. If the perimeter of an equilateral triangle is 15 cm, what is the length of each side?

5. Can a triangle have more than one obtuse angle? Explain.

6. Can a triangle have one obtuse angle and one right angle? Explain.
1. Draw triangles that fit the following classifications. Use a ruler and protractor. Label the side lengths and angles.
 a. Right and isosceles
 b. Right and scalene
 c. Obtuse and isosceles
 d. Acute and scalene

2. Draw all possible lines of symmetry in the triangles above. Explain why some of the triangles do not have lines of symmetry.
Are the following statements true or false? Explain.

3. \(\triangle ABC \) is an isosceles triangle. \(AB \) must be 2 cm. True or False?

4. A triangle cannot have both an acute angle and a right angle. True or False?

5. \(\triangle XYZ \) can be described as both equilateral and acute. True or False?

6. A right triangle is always scalene. True or False?

Extension: In \(\triangle ABC \), \(x^\circ = y^\circ \). True or False?
Lesson 15 Homework

1. Use the word bank to name each shape, being as specific as possible.

<table>
<thead>
<tr>
<th>Parallelogram</th>
<th>Trapezoid</th>
<th>Rectangle</th>
<th>Square</th>
</tr>
</thead>
</table>

a. ___________________ b. ___________________

c. ___________________ d. ___________________

2. Explain the attribute that makes a square a special rectangle.

3. Explain the attribute that makes a rectangle a special parallelogram.

4. Explain the attribute that makes a parallelogram a special trapezoid.
5. Construct the following figures based on the given attributes. Give a name to each figure you construct. Be as specific as possible.

a. A quadrilateral with four sides the same length and four right angles.

b. A quadrilateral with two sets of parallel sides.

c. A trapezoid with only one set of parallel sides.

d. A parallelogram with four right angles.
Use the grid to construct the following. Name the figure you drew using one of the terms in the word box.

1. Construct a quadrilateral with only one set of parallel sides.
Which shape did you create?

2. Construct a quadrilateral with one set of parallel sides and two right angles.
Which shape did you create?

3. Construct a quadrilateral with two sets of parallel sides.
Which shape did you create?

WORD BOX
Parallelogram
Trapezoid
Rectangle
Square
Rhombus
4. Construct a quadrilateral with all sides of equal length.
 Which shape did you create?

5. Construct a rectangle with all sides of equal length.
 Which shape did you create?
Lesson 1 Exit Ticket

Name ___________________________ Date ____________________

1. Fill in the blank to make the sentence true in both fraction form and decimal form.
 a. $\frac{9}{10} \text{ cm} + ______ \text{ cm} = 1 \text{ cm}$
 $0.9 \text{ cm} + ______ \text{ cm} = 1.0 \text{ cm}$
 b. $\frac{4}{10} \text{ cm} + ______ \text{ cm} = 1 \text{ cm}$
 $0.4 \text{ cm} + ______ \text{ cm} = 1.0 \text{ cm}$

2. Match each amount expressed in unit form to its fraction form and decimal form.

 - 3 tenths $\frac{3}{10} = 0.3$
 - 8 tenths $\frac{8}{10} = 0.8$
 - 5 tenths $\frac{5}{10} = 0.5$
Lesson 2 Exit Ticket

NYS COMMON CORE MATHEMATICS CURRICULUM

4•6

Name ____________________________ Date _________________

1. For the length given below, draw a line segment to match. Express the measurement as an equivalent mixed number.

 4.8 cm

2. Write the following in decimal form and as a mixed number. Shade the area model to match.

 a. 3 ones and 7 tenths = _________ = _________

 b. \(\frac{24}{10} \) = _________ = _________

 How much more is needed to get to 5? _________________

© 2014 Common Core, Inc. Some rights reserved. commoncore.org

Lesson 2: Use metric measurement and area models to represent tenths as fractions greater than 1 and decimal numbers.

10/27/14

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
1. Circle groups of tenths to make as many ones as possible.

 a. How many tenths in all? Write and draw the same number using ones and tenths.

 ![Decimal representation and drawing]

 There are ________ tenths.

 Decimal Form: ________

 How much more is needed to get to 2? ________

2. Complete the chart.

<table>
<thead>
<tr>
<th>Point</th>
<th>Number Line</th>
<th>Decimal Form</th>
<th>Mixed Number (ones and fraction form)</th>
<th>Expanded Form (fraction or decimal form)</th>
<th>How much to get to the next one?</th>
</tr>
</thead>
<tbody>
<tr>
<td>a.</td>
<td></td>
<td></td>
<td>12 \frac{9}{10}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b.</td>
<td></td>
<td>70.7</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Lesson 4 Exit Ticket

Name ____________________________ Date __________________

1. Shade in the amount shown. Then, write the equivalent decimal.

\[\frac{6}{10} \text{ m} \]

2. Draw a number bond, pulling out the tenths from the hundredths. Write the total as the equivalent decimal.
 a. \(\frac{62}{100} \text{ m} \)
 b. \(\frac{27}{100} \)
Use both tenths and hundredths number disks to represent each fraction. Write the equivalent decimal, and fill in the blanks to represent each in unit form.

1. \(\frac{7}{100} = 0.\quad \) _hundredths

2. \(\frac{34}{100} = 0.\quad \) _tenth_ _hundredths_
Use any protractor to measure the angles, and then record the measurements in degrees.

1.

2.

3.

4.
Construct angles that measure the given number of degrees. Draw an arc to indicate the angle that was measured.

1. 75°

2. 105°

3. 81°

4. 99°
Lesson 8 Exit Ticket

Name ___________________________ Date ______________

1. Marty was doing a handstand. Describe how many degrees his body will turn to be upright again.

![Handstand]

2. Jeffrey started riding his bike at the ⭐. He travelled north for 3 blocks, then turned 90° to the right and rode for 2 blocks. In which direction was he headed? Sketch his route on the grid below. Each square unit represents 1 block.

![Grid with route]
Lesson 9 Exit Ticket

Name ________________________________ Date __________________

1. Describe and sketch two combinations of the blue rhombus pattern block that create a straight angle.

2. Describe and sketch two combinations of the green triangle and yellow hexagon pattern block that create a straight angle.
Write an equation and solve for x. $\angle TUV$ is a straight angle.

Equation: ________________________________

$x^\circ = \underline{\hspace{2cm}}$
Lesson 11 Exit Ticket

NYS COMMON CORE MATHEMATICS CURRICULUM

Lesson 11: Use the addition of adjacent angle measures to solve problems using a symbol for the unknown angle measure.

Date: 9/14/14

Name ________________________________ Date __________________

Write equations using variables to represent the unknown angle measurements. Find the unknown angle measurements numerically.

1. \(x^\circ = \)

2. \(y^\circ = \)

3. \(z^\circ = \)
Lesson 12 Exit Ticket

Name ________________________________ Date ________________

1. Is the line drawn a line of symmetry? Circle your choice.

 ![Diagram of a shape with a dashed line drawn through it]

 Yes No

 ![Diagram of a square with a dashed line drawn through it]

 Yes No

 ![Diagram of a circle with a dashed line drawn through it]

 Yes No

2. Draw as many lines of symmetry as you can find in the figure below.

 ![Diagram of a cross-shaped figure with dashed lines drawn through it]
Lesson 13 Exit Ticket

Name ________________________________ Date __________________

Use appropriate tools to solve the following problems.

1. The triangles below have been classified by shared attributes (side length or angle type). Use the words acute, right, obtuse, scalene, isosceles, or equilateral to label the headings to identify the way the triangles have been sorted.

![Triangle Classifications](image)

2. Draw lines to identify each triangle according to angle type and side length.
 a. Acute
 b. Obtuse
 c. Right
 d. Isosceles
 e. Equilateral
 f. Scalene

3. Identify and draw any lines of symmetry in the triangles in Problem 2.
Lesson 14 Exit Ticket

1. Draw an obtuse isosceles triangle, and then draw any lines of symmetry if they exist.

2. Draw a right scalene triangle, and then draw any lines of symmetry if they exist.

3. Every triangle has at least ____ acute angles.
1. In the space below, draw a parallelogram.

2. Explain why a rectangle is a special parallelogram.
1. Construct a parallelogram that does not have any right angles on a rectangular grid.

2. Construct a rectangle on a triangular grid.
Lesson 1 Sprint 4-6

A

Divide by 10

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20 ÷ 10 =</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>30 ÷ 10 =</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>40 ÷ 10 =</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>80 ÷ 10 =</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>50 ÷ 10 =</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>90 ÷ 10 =</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>70 ÷ 10 =</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>60 ÷ 10 =</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>10 ÷ 10 =</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>100 ÷ 10 =</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>20 ÷ 10 =</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>120 ÷ 10 =</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>50 ÷ 10 =</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>150 ÷ 10 =</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>80 ÷ 10 =</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>180 ÷ 10 =</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>280 ÷ 10 =</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>380 ÷ 10 =</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>680 ÷ 10 =</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>640 ÷ 10 =</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>870 ÷ 10 =</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>430 ÷ 10 =</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>50 ÷ 10 =</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>850 ÷ 10 =</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>1,850 ÷ 10 =</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>70 ÷ 10 =</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>270 ÷ 10 =</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>4,270 ÷ 10 =</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>90 ÷ 10 =</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>590 ÷ 10 =</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>7,590 ÷ 10 =</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>120 ÷ 10 =</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>1,200 ÷ 10 =</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>2,000 ÷ 10 =</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>240 ÷ 10 =</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>2,400 ÷ 10 =</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>4,000 ÷ 10 =</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>690 ÷ 10 =</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>6,900 ÷ 10 =</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>9,000 ÷ 10 =</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>940 ÷ 10 =</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>5,280 ÷ 10 =</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>6,700 ÷ 10 =</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>7,000 ÷ 10 =</td>
<td></td>
</tr>
</tbody>
</table>

Number Correct: _______
Divide by 10

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10 ÷ 10 =</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>20 ÷ 10 =</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>30 ÷ 10 =</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>70 ÷ 10 =</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>40 ÷ 10 =</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>80 ÷ 10 =</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>60 ÷ 10 =</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>50 ÷ 10 =</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>90 ÷ 10 =</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>100 ÷ 10 =</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>30 ÷ 10 =</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>130 ÷ 10 =</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>60 ÷ 10 =</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>160 ÷ 10 =</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>90 ÷ 10 =</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>190 ÷ 10 =</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>290 ÷ 10 =</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>390 ÷ 10 =</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>690 ÷ 10 =</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>650 ÷ 10 =</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>860 ÷ 10 =</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>420 ÷ 10 =</td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>40 ÷ 10 =</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>840 ÷ 10 =</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>1,840 ÷ 10 =</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>80 ÷ 10 =</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>80 ÷ 10 =</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>4,280 ÷ 10 =</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>60 ÷ 10 =</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>560 ÷ 10 =</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>7,560 ÷ 10 =</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>130 ÷ 10 =</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>1,300 ÷ 10 =</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>3,000 ÷ 10 =</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>250 ÷ 10 =</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>2,500 ÷ 10 =</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>5,000 ÷ 10 =</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>740 ÷ 10 =</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>7,400 ÷ 10 =</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>4,000 ÷ 10 =</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>910 ÷ 10 =</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>5,820 ÷ 10 =</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>7,600 ÷ 10 =</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>6,000 ÷ 10 =</td>
<td></td>
</tr>
</tbody>
</table>

Number Correct: ________

Improvement: ________
Write Fractions and Decimals

<table>
<thead>
<tr>
<th>Fraction</th>
<th>Decimal</th>
<th>Correct</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. (\frac{2}{10})</td>
<td>.</td>
<td></td>
</tr>
<tr>
<td>2. (\frac{3}{10})</td>
<td>.</td>
<td></td>
</tr>
<tr>
<td>3. (\frac{4}{10})</td>
<td>.</td>
<td></td>
</tr>
<tr>
<td>4. (\frac{8}{10})</td>
<td>.</td>
<td></td>
</tr>
<tr>
<td>5. (\frac{6}{10})</td>
<td>.</td>
<td></td>
</tr>
<tr>
<td>6. (0.1)</td>
<td>(\frac{1}{10})</td>
<td></td>
</tr>
<tr>
<td>7. (0.2)</td>
<td>(\frac{2}{10})</td>
<td></td>
</tr>
<tr>
<td>8. (0.3)</td>
<td>(\frac{3}{10})</td>
<td></td>
</tr>
<tr>
<td>9. (0.7)</td>
<td>(\frac{7}{10})</td>
<td></td>
</tr>
<tr>
<td>10. (0.5)</td>
<td>(\frac{5}{10})</td>
<td></td>
</tr>
<tr>
<td>11. (\frac{5}{10})</td>
<td>.</td>
<td></td>
</tr>
<tr>
<td>12. (0.8)</td>
<td>(\frac{8}{10})</td>
<td></td>
</tr>
<tr>
<td>13. (\frac{7}{10})</td>
<td>.</td>
<td></td>
</tr>
<tr>
<td>14. (0.4)</td>
<td>(\frac{4}{10})</td>
<td></td>
</tr>
<tr>
<td>15. (\frac{9}{10})</td>
<td>.</td>
<td></td>
</tr>
<tr>
<td>16. (\frac{10}{10})</td>
<td>.</td>
<td></td>
</tr>
<tr>
<td>17. (\frac{11}{10})</td>
<td>.</td>
<td></td>
</tr>
<tr>
<td>18. (\frac{12}{10})</td>
<td>.</td>
<td></td>
</tr>
<tr>
<td>19. (\frac{15}{10})</td>
<td>.</td>
<td></td>
</tr>
<tr>
<td>20. (\frac{25}{10})</td>
<td>.</td>
<td></td>
</tr>
<tr>
<td>21. (\frac{45}{10})</td>
<td>.</td>
<td></td>
</tr>
<tr>
<td>22. (\frac{38}{10})</td>
<td>.</td>
<td></td>
</tr>
<tr>
<td>23. (1)</td>
<td>(\frac{1}{10})</td>
<td></td>
</tr>
<tr>
<td>24. (2)</td>
<td>(\frac{2}{10})</td>
<td></td>
</tr>
<tr>
<td>25. (5)</td>
<td>(\frac{5}{10})</td>
<td></td>
</tr>
<tr>
<td>26. (4)</td>
<td>(\frac{4}{10})</td>
<td></td>
</tr>
<tr>
<td>27. (4.1)</td>
<td>(\frac{41}{10})</td>
<td></td>
</tr>
<tr>
<td>28. (4.2)</td>
<td>(\frac{42}{10})</td>
<td></td>
</tr>
<tr>
<td>29. (4.6)</td>
<td>(\frac{46}{10})</td>
<td></td>
</tr>
<tr>
<td>30. (2.6)</td>
<td>(\frac{26}{10})</td>
<td></td>
</tr>
<tr>
<td>31. (3.6)</td>
<td>(\frac{36}{10})</td>
<td></td>
</tr>
<tr>
<td>32. (3.4)</td>
<td>(\frac{34}{10})</td>
<td></td>
</tr>
<tr>
<td>33. (2.3)</td>
<td>(\frac{23}{10})</td>
<td></td>
</tr>
<tr>
<td>34. (4.3)</td>
<td>(\frac{43}{10})</td>
<td></td>
</tr>
<tr>
<td>35. (\frac{20}{10})</td>
<td>.</td>
<td></td>
</tr>
<tr>
<td>36. (1.8)</td>
<td>(\frac{18}{10})</td>
<td></td>
</tr>
<tr>
<td>37. (3.4)</td>
<td>(\frac{34}{10})</td>
<td></td>
</tr>
<tr>
<td>38. (\frac{50}{10})</td>
<td>.</td>
<td></td>
</tr>
<tr>
<td>39. (4.7)</td>
<td>(\frac{47}{10})</td>
<td></td>
</tr>
<tr>
<td>40. (2.8)</td>
<td>(\frac{28}{10})</td>
<td></td>
</tr>
<tr>
<td>41. (\frac{30}{10})</td>
<td>.</td>
<td></td>
</tr>
<tr>
<td>42. (3.2)</td>
<td>(\frac{32}{10})</td>
<td></td>
</tr>
<tr>
<td>43. (\frac{20}{10})</td>
<td>.</td>
<td></td>
</tr>
<tr>
<td>44. (2.1)</td>
<td>(\frac{21}{10})</td>
<td></td>
</tr>
</tbody>
</table>

Number Correct: _____
Lesson 4 Sprint

Write Fractions and Decimals

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>(\frac{1}{10}) =</td>
<td>.</td>
</tr>
<tr>
<td>2.</td>
<td>(\frac{2}{10}) =</td>
<td>.</td>
</tr>
<tr>
<td>3.</td>
<td>(\frac{3}{10}) =</td>
<td>.</td>
</tr>
<tr>
<td>4.</td>
<td>(\frac{7}{10}) =</td>
<td>.</td>
</tr>
<tr>
<td>5.</td>
<td>(\frac{5}{10}) =</td>
<td>.</td>
</tr>
<tr>
<td>6.</td>
<td>(0.2) =</td>
<td>(\frac{2}{10})</td>
</tr>
<tr>
<td>7.</td>
<td>(0.3) =</td>
<td>(\frac{3}{10})</td>
</tr>
<tr>
<td>8.</td>
<td>(0.4) =</td>
<td>(\frac{4}{10})</td>
</tr>
<tr>
<td>9.</td>
<td>(0.8) =</td>
<td>(\frac{8}{10})</td>
</tr>
<tr>
<td>10.</td>
<td>(0.6) =</td>
<td>(\frac{6}{10})</td>
</tr>
<tr>
<td>11.</td>
<td>(\frac{4}{10}) =</td>
<td>.</td>
</tr>
<tr>
<td>12.</td>
<td>(0.9) =</td>
<td>(\frac{9}{10})</td>
</tr>
<tr>
<td>13.</td>
<td>(\frac{6}{10}) =</td>
<td>.</td>
</tr>
<tr>
<td>14.</td>
<td>(0.5) =</td>
<td>(\frac{5}{10})</td>
</tr>
<tr>
<td>15.</td>
<td>(\frac{9}{10}) =</td>
<td>.</td>
</tr>
<tr>
<td>16.</td>
<td>(\frac{10}{10}) =</td>
<td>.</td>
</tr>
<tr>
<td>17.</td>
<td>(\frac{11}{10}) =</td>
<td>.</td>
</tr>
<tr>
<td>18.</td>
<td>(\frac{12}{10}) =</td>
<td>.</td>
</tr>
<tr>
<td>19.</td>
<td>(\frac{17}{10}) =</td>
<td>.</td>
</tr>
<tr>
<td>20.</td>
<td>(\frac{27}{10}) =</td>
<td>.</td>
</tr>
<tr>
<td>21.</td>
<td>(\frac{47}{10}) =</td>
<td>.</td>
</tr>
<tr>
<td>22.</td>
<td>(\frac{34}{10}) =</td>
<td>.</td>
</tr>
<tr>
<td>23.</td>
<td>(1) =</td>
<td>(\frac{1}{10})</td>
</tr>
<tr>
<td>24.</td>
<td>(2) =</td>
<td>(\frac{2}{10})</td>
</tr>
<tr>
<td>25.</td>
<td>(4) =</td>
<td>(\frac{4}{10})</td>
</tr>
<tr>
<td>26.</td>
<td>(3) =</td>
<td>(\frac{3}{10})</td>
</tr>
<tr>
<td>27.</td>
<td>(3.1) =</td>
<td>(\frac{31}{10})</td>
</tr>
<tr>
<td>28.</td>
<td>(3.2) =</td>
<td>(\frac{32}{10})</td>
</tr>
<tr>
<td>29.</td>
<td>(3.6) =</td>
<td>(\frac{36}{10})</td>
</tr>
<tr>
<td>30.</td>
<td>(1.6) =</td>
<td>(\frac{16}{10})</td>
</tr>
<tr>
<td>31.</td>
<td>(2.6) =</td>
<td>(\frac{26}{10})</td>
</tr>
<tr>
<td>32.</td>
<td>(4.2) =</td>
<td>(\frac{42}{10})</td>
</tr>
<tr>
<td>33.</td>
<td>(2.5) =</td>
<td>(\frac{25}{10})</td>
</tr>
<tr>
<td>34.</td>
<td>(3 \frac{4}{10}) =</td>
<td>.</td>
</tr>
<tr>
<td>35.</td>
<td>(\frac{50}{10}) =</td>
<td>.</td>
</tr>
<tr>
<td>36.</td>
<td>(1.7) =</td>
<td>(\frac{17}{10})</td>
</tr>
<tr>
<td>37.</td>
<td>(4 \frac{3}{10}) =</td>
<td>.</td>
</tr>
<tr>
<td>38.</td>
<td>(\frac{20}{10}) =</td>
<td>.</td>
</tr>
<tr>
<td>39.</td>
<td>(4.6) =</td>
<td>(\frac{46}{10})</td>
</tr>
<tr>
<td>40.</td>
<td>(2 \frac{4}{10}) =</td>
<td>.</td>
</tr>
<tr>
<td>41.</td>
<td>(\frac{40}{10}) =</td>
<td>.</td>
</tr>
<tr>
<td>42.</td>
<td>(2.3) =</td>
<td>(\frac{23}{10})</td>
</tr>
<tr>
<td>43.</td>
<td>(\frac{30}{10}) =</td>
<td>.</td>
</tr>
<tr>
<td>44.</td>
<td>(4.1) =</td>
<td>(\frac{41}{10})</td>
</tr>
</tbody>
</table>