

Advanced Programs Division

AP* Calculus Review

Derivatives

Teacher Packet

Advanced Placement and AP are registered trademark of the College Entrance Examination Board. The College Board was not involved in the production of, and does not endorse, this product.

Copyright © 2008 Laying the Foundation, Inc., Dallas, Texas. All rights reserved.

These materials may be used for face-to-face teaching with students only.

Page 1 of 18

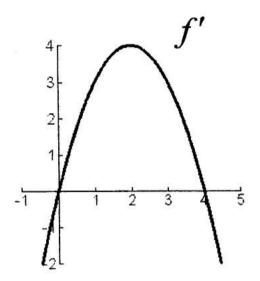
Theorems

THEOREM: The First Derivative Test

If f' exhibits a sign change at a critical point c, then c is the location of an extrema on f.

A local maximum is indicated by f' changing from positive to negative. A local minimum is indicated by f' changing from negative to positive.

Example:



The given graph of f' exhibits a sign change from - to + at x = 0, therefore f must have a local minimum at x = 0.

The given graph of f' exhibits a sign change from + to - at x = 4, therefore f must have a local maximum at x = 4

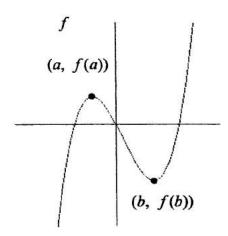
Page 2 of 18

THEOREM: The Second Derivative Test

If f'' > 0, where c is a critical point on f, then c is the location of a local minimum.

If f'' < 0, where c is a critical point on f, then c is the location of a local maximum.

Example:



The given graph of f exhibits a critical number at x = a. f is concave down at x = a, therefore f must have a local maximum at x = a.

The given graph of f exhibits a critical number at x = b. f is concave up at x = b, therefore f must have a local maximum at x = b.

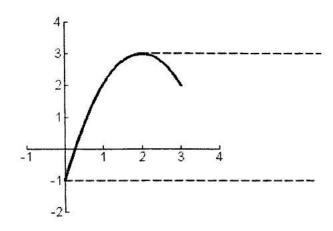
Page 3 of 18

THEOREM: Intermediate Value Theorem for Continuous Functions (IVT)

A function y = f(x) that is **continuous** on a closed interval [a, b] takes on every value between f(a) and f(b).

In other words, if y_0 is between f(a) and f(b), then $y_0 = f(c)$ for some c in [a, b].

Example:



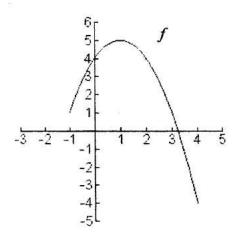
The function above is continuous on the interval $0 \le x \le 3$. Therefore, every y-value between -1 and 3 is guaranteed to exist at least once somewhere on the interval.

Page 4 of 18

THEOREM: The Extreme Value Theorem

If f is a **continuous** function on the closed interval [a, b], then f has both a minimum and a maximum on [a, b] which must occur at the end points or critical numbers located between the endpoints.

Example:



From the given graph of f, we can see that the absolute minimum on -1 < x < 4 is -4 which occurs at the right end point of the interval

From the given graph of f, we can see that the absolute maximum on -1 < x < 4 is 5 which occurs at the critical number x = 1.

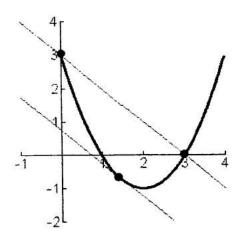
Page 5 of 18

THEOREM: The Mean Value Theorem for Derivatives (MVT)

If y = f(x) is **continuous** at every point on [a, b] and **differentiable** at every point on (a, b), then there must exist a number c in (a, b) such that

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

Example:



For the given function, the slope of the segment connecting (0, 3) and (3, 0) is -1. Since the function is continuous on the closed interval [0, 3] and differentiable on the open interval (0, 3), then there is at least one place where the slope of the tangent line will be -1. This occurs when $x = \frac{3}{2}$.

Page 6 of 18

No calculator allowed on questions 1-11.

х	0	1	2	
f(x)	-1	k	-2	

- 1. The function f is continuous on the closed interval [0, 2] and has values that are given in the table above. f(x) must have at least two solutions in the interval [0, 2] if k =
- (A) -2.5 (B) -1.5 (C) -0.5 (D) 0
- (E) 0.5
- 2. Find any local minimum values of $f(x) = \frac{1}{3}x^3 + x^2 8x + 2$ on the open interval (0, 4).
 - (A) $-\frac{22}{3}$ (B) -4 (C) -2 (D) 2 (E) $\frac{86}{3}$

- 3. Find the global minimum value for $h(x) = \frac{1}{3}x^3 x^2 8x + \frac{2}{3}$ on [-3, 0].
 - (A) -2

- (B) 0 (C) $\frac{2}{3}$ (D) $\frac{20}{3}$ (E) 10
- 4. If c is the number that satisfies the conclusion of the Mean Value Theorem for $f(x) = x^3 2x^2$ on the interval $0 \le x \le 2$, then c =
 - (A) 2

- (B) $\frac{4}{3}$ (C) 0 (D) $-\frac{2}{3}$
- (E) -1

- 5. The equation of the line tangent to the graph of $y = \frac{3x-2}{2x-3}$ at the point (1, -1) is
 - (A) 9x y = -10
 - (B) 5x + y = 4
 - (C) x + 5y = -4
 - (D) 5x + y = 6
 - (E) 3x + 2y = -5
- 6. If $f(x) = x^{\frac{2}{3}}$, then f'(8) =
 - (A) 8

(B) 4

- (C) $\frac{4}{3}$
- (D) $\frac{1}{3}$
- (E) $\frac{1}{6}$

- 7. If $x^3 + 2xy 3y^2 = 12$, then $\frac{dy}{dx} =$
 - (A) $\frac{3x^2+2}{-6y}$
 - (B) $\frac{3x^2 y}{6y 2x}$
 - (C) $\frac{3x^2+2y-12}{6y-2x}$
 - (D) $\frac{3x^2}{6y-2}$
 - (E) $\frac{3x^2 + 2y}{6y 2x}$

8. If $f(x) = e^{\cos x}$, then f'(x) =

(A)
$$f'(x) = \cos(x) e^{\sin x}$$

(B)
$$f'(x) = -\sin(e^{\cos x})$$

(C)
$$f'(x) = \cos(x) e^{-\sin x}$$

(D)
$$f'(x) = -\sin(x) e^{\cos x}$$

(E)
$$f'(x) = \cos(e^{-\sin x})$$

9. On what interval within $0 \le x \le \pi$ is the function $h(x) = \cos(2x)$ decreasing and concave up?

(A)
$$0 < x < \frac{\pi}{4}$$

(B)
$$\frac{\pi}{2} < x < \frac{3\pi}{4}$$

(C)
$$\frac{3\pi}{4} < x < \pi$$

(D)
$$\frac{\pi}{4} < x < \frac{\pi}{2}$$

(E) Such an interval does not exist.

Page 9 of 18

10. If $f(x) = \sqrt{\sin x}$, then f'(x) =

- (A) $\frac{\cos x}{2\sqrt{\sin x}}$
- (B) $\frac{1}{2\sqrt{\cos x}}$
- $(C) -\frac{1}{2}\sqrt{\sin x}\cos x$
- (D) $-\frac{\cos x}{2\sqrt{\sin x}}$
- (E) $\frac{1}{2\sqrt{\sin x}}$

11. How many points of inflection are there for the function g on the interval $-\pi < x < \pi$ if $g''(x) = (x-2)^3(x+3)^2(\cos x)$?

- (A) One
- (B) Two
- (C) Three
- (D) Four
- (E) None

A calculator may be necessary for questions 12 - 20.

12GC. The table below gives values for f, f', g and g' at selected values of x.

x	f(x)	f'	g(x)	g'	
0	3	-4	9	-1	
2	-5	6	2	5	
4	1	3	7	8	

h(x) = f(x)g(x), then h'(2) =

(A) -20

If

- (B) -13
- (C) -10
- (D) 20
- (E) 30

13GC. The function g is continuous on the interval [2, 5] and differentiable on the interval (2, 5). If g(2) = 3 and g(5) = -6 which of the following must be true?

- I. There exists c, where 2 < c < 5, such that: g'(c) = 0.
- II. There exists c, where 2 < c < 5, such that: g(c) = 0.
- III. There exists c, where 2 < c < 5, such that $g'(c) = \frac{g(5) g(2)}{5 2}$
- (A) I only
- (B) I and II only
- (C) II only
- (D) II and III only
- (E) I, II, and III

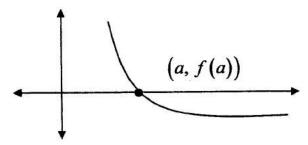
LAYING FOUNDATION Advanced Programs Dresser

Derivatives

Page 11 of 18

14GC. Let f be a function that is continuous for all values and differentiable on the open interval (0, 5). If f(1) = 4, f(2) = -2 and f(3) = 2, which of the following must be true?

- I. For some c, 1 < c < 3, f'(c) = -1
- II. f(2) is a relative minimum.
- III. For some c, 0 < c < 5, f(c) = 3.
 - (A) None
 - (B) I only
 - (C) I and II only
 - (D) I and III only
 - (E) I, II and III



15GC. The graph of f is shown above. Based on this graph, place f(a), f'(a), f''(a) in order from least to greatest.

(A)
$$f(a) < f'(a) < f''(a)$$

(B)
$$f'(a) < f(a) < f''(a)$$

(C)
$$f''(a) < f(a) < f'(a)$$

(D)
$$f'(a) < f''(a) < f(a)$$

(E)
$$f''(a) < f'(a) < f(a)$$

Page 12 of 18

16GC. If f(x) is continuous and differentiable for all real numbers, which of the following tables indicate that f(x) could be concave up for all values $2 \le x \le 8$?

(A)

x	f(x)
2	-2
4	0
6	2
8	4

(B)

x	f(x)
2	-8
4	-12
6	-18
8	-26

x	f(x)
2	-2
4	4
6	8
8	14

(D)

х	f(x)
2	3
4	5
6	8
8	9

(E)

х	f(x)
2	0
4	2
6	6
8	11

x	0	1	2	3	4	5	6	7
f(x)	3	5	4	1	3	4	6	5

17GC. The table of values above represents a function, f(x), which is continuous and differentiable for all values of x, $0 \le x \le 7$. Which of the following is the best estimate of the value of f'(3)?

(B)
$$-\frac{1}{2}$$
 (C) $\frac{1}{2}$

(C)
$$\frac{1}{2}$$

(D)
$$\frac{2}{3}$$

(E)
$$\frac{3}{2}$$

Page 13 of 18

18GC. How many relative minima are there on the interval (-1, 4) for the function f(x), if

$$f'(x) = \frac{x^5 - 13x^3 + 36x}{4}$$
?

- (A) 1
- (B) 2
- (C) 3
- (D) 4
- (E) 5

19GC. For what value of x is the instantaneous rate of change of the function $g(x) = \frac{x^2 - 9}{x^2}$ equal to the average rate of change of g over the interval [1, 3]?

- (A) x = 0.281
- (B) x = 0.438
- (C) x = 1.651
- (D) x = 3.464
- (E) x = 4.160

20GC. At what value of x will $g(x) = 3e^{2x-4}$ and $f(x) = \ln(x) + 2$ have parallel tangents?

- (A) 0.934
- (B) 1.070
- (C) 1.314
- (D) 1.940
- (E) The functions never have parallel tangents.

Page 14 of 18

Free Response 1- No calculator
Let f be the function defined by $f(x) = x^3 + 2x^2 - 4x + k$, where k is a constant.
(a) On what intervals is f increasing? Justify your answer.
(b) On what intervals is f concave downward? Justify your answer.
(c) Identify any local minimums on $f(x)$. Justify your answer.

(d) Find the values of k for which f would have exactly two solutions.

Page 15 of 18

Free Response 2 - Calculator allowed

Let f be a twice-differentiable function that is **even** and continuous on the closed interval [-6, 6]. The function f and its derivatives have the properties indicated on the table below.

x	0	0 < x < 2	2	2 < x < 4	4	4 < x < 6
f(x)	2	Positive	0	Negative	-2	Negative
f'(x)	0	Negative	-1	Negative	0	Positive
f"(x)	Negative	Negative	0	Positive	Positive	Positive

(a) Identify all x-coordinates at which f attains local minimum values over the interval [-6, 6]. Justify your answer.

(b) Identify all x-coordinates of points of inflection over the interval [-6, 6]. Justify your answer.

(c) Identify the x and y coordinates of any local maximums and use the Second Derivative Test to justify your answer.

(d) Sketch a graph of f over the interval [-6, 6].