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Theorems

THEOREM: The First Derivative Test
If /' exhibits a sign change at a critical point c, then ¢ is the location of an extrema on f.

A local maximum is indicated by f” changing from positive to negative.
A local minimum is indicated by /' changing from negative to positive.
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Example:
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The given graph of ' exhibits a sign change from —to +atx =0,
therefore f must have a local minimum at x=0. ~

The given graph of f' exhibits a sign change from +to—atx=4,
therefore / must have a local maximum at x = 4
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THEOREM: The Second Derivative Test
If f" >0, where c is a critical point on f; then c is the location of a local minimum.

If /" <0, where c is a critical point on £ then c is the location of a local maximum
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Example:

~

'\
N
A

b, f(®)

——
S ——

The given graph of f exhibits a critical number at x = a. f is concave down at x = q, therefore / must have
a local maximum at x = a.
The given graph of f exhibits a critical number at x = b. f is concave up at x = b, therefore f must have a

local maximum at x = b.
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THEOREM: Intermediate Value Theorem for Continuous Functions (IVT)

A function y = f'(x) that is continuous on a closed interval [a, b] takes on every value between f(a) and
f().

In other words, if yp is between f(a) and f(b), then yp = f(c) for some c in [a, b].

Example:

The function above is continuous on the interval 0 < x <3. Therefore, every y-value between -1 and 3 is
guaranteed to exist at least once somewhere on the interval.
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THEOREM: The Extreme Value Theorem

If f is a continuous function on the closed interval [a, b], then f has both a minimum and a maximum on
[a, b] which must occur at the end points or critical numbers located between the endpoints.

Example:

Br
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From the given graph of f, we can see that the absolute minimum on -1 <x <4 is —4 which occurs at the
right end point of the interval

From the given graph of £, we can see that the absolute maximum on -1 <x <4 is 5 which occurs at the
critical number x = 1.
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THEOREM: The Mean Value Theorem for Derivatives (MVT)

If y = f (x) is continuous at every point on [a, b] and differentiable at every point on (a, b),
then there must exist a number c in (a, b) such that

fio-L8=1@
—-a

Example:

For the given function, the slope of the segment connecting (0, 3) and ( 3, 0) is -1. Since the function is
continuous on the closed interval [0, 3] and differentiable on the open interval (0, 3), then there is at least
one place where the slope of the tangent line will be —1. This occurs whenx = %
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No calculator allowed on questions 1-11.

X 0 1 2

fx) | -1 k| =2

1. The function f is continuous on the closed interval [0, 2] and has values that are given in the table above.
f (x) must have at least two solutions in the interval [0, 2] if k=

(A) -25 B) —-15 _ (C) - 0.5 D)o (E) 05

2. Find any local minimum values of f(x)= %f +x* —Bx+2 on the open interval (0, 4).

mw% ®4 (©-=2 (@2 @?

3. Find the global minimum value for A(x) = %f sl +—§-on 3, 0].

@A) -2 ®) 0 @% @? ®) 10

4. If ¢ is the number that satisfies the conclusion of the Mean Value Theorem for f(x) = x’ —2x”on the
interval 0<x<2,thenc=

@A) 2 @% © 0 mw% ®-1
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3x-2

5. The equation of the line tangent to the graph of y = 523 at the point (1, —1) is

(A) 9x-y=-10
(B) S5x+y=4
(C) x+5y=—4
D) 5x+y=6

(E) 3x+2y=-5

2

6.1f f(x)=x*, then f'8)=

A) 8 ®)4 © % )

W | -

7.1 x* +2xy—-3y* =12, then %=

3x*+2
-6y

(A)

2—
®) 3x*—-y

6y—2x

3x*+2y-12

© 6y—-2x

D)

(E)
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8. If f(x)=e"", then f'(x)=
(A) f'(x)=cos(x) e™*
(B) 1'(x)=—sin( &)
(©) f'(x)=cos(x) e
(D) £'(x) = -sin(x) e™*
) f'(x)=cos( &™)

9. On what interval within 0 < x < 7 is the function A(x) = cos(2x) decreasing and concave up?
n
A) O<x<—
(A) Qsx ey

(B) %<x<§4£

37
C) —<x<»7&
© R

n n
—<x<=—
D) 2 5

(E) Such an interval does not exist.
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10. If f(x)=+/sinx, then f'(x)=

Cosx

“ 2 Jnx

1
®) 2Jcosx
© —%Jsinxcosx

COS X
D) ~—=
24/sinx

1
®) 2-Jsinx

11. How many points of inflection are there for the function g on the interval -z <x <7z if
g"(x)=(x-2)’(x+3)*(cosx)?

(A) One
(B) Two
(C) Three

(D) Four

(E) None
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A calculator may be necessary for questions 12 - 20.

12GC. The table below gives values forf f*, gand g’ at selected values of x.

x f(x) : i g(x) g
0 3 —4 9 -1
2 -5 6 2 5
If 4 1 3 7 8 h(x)= f(x)g(x),then A'(2)=
(A) —20
(B) 13
(C) -10
(D) 20
(E) 30

13GC. The function g is continuous on the interval [2, 5] and differentiable on the interval (2, 5).
If g(2)=3 and g(5)=—6 which of the following must be true?

1. There exists ¢, where 2 < ¢ <5, such that: g'(c)=0.
I1. There exists ¢, where 2 <¢ <5, such that: g(c)=0.

III. There exists c, where 2 <c¢ <5, such that g'(c) = 8(5;—425’(2)

(A)lonly (B)Iandllonly (C)lonly (D)HandIMonly (E)I,II,and III
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14GC. Let f be a function that is continuous for all values and differentiable on the open interval (0, 5).
Iff(1)=4,f(2) =—2 and f(3) = 2, which of the following must be true?

I. Forsomec,1<c<3, f'(c)=-1
II. f(2) is a relative minimum.
III. Forsomec, 0 <c<5, f(c)=3.
(A) None

(B) I only
(C)I and I1 only

(D) I and III only
(E) I, T and III

(a. 7 (a))

v

15GC. The graph of f is shown above. Based on this graph, place f(a), f'(a), f"(a) in order from least
to greatest.

(A) f@)< f(a)< f*(a)
B) f(@)< fla)< f(a)
©) ff(a)< fla)< f(a)
@) f(a)< f'(a)< f(a)
®) f'(a)< f(a)< f(a)
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16GC. If f(x) is continuous and differentiable for all real numbers, which of the following tables indicate
that f(x) could be concave up for all values 2 <x < 8?

@ T ® = T7® © 17
2 -2 2 -8 2 -2
4 ] 0 4 | -2 4 | a
6 2 6 —18 6 8
8 4 8 -26 8 14
D) E)
x | f(® x | /)
4 2
e 5T ¢

fOl 3151413465

17GC. The table of values above represents a function, f(x), which is continuous and differentiable for
all values of x, 0 <x<7. Which of the following is the best estimate of the value of f'(3)?

1 1
(A) 2 (B) —3 © 3 D)

wN

3
(E)E
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18GC. How many relative minima are there on the interval (-1, 4) for the function f(x), if

19GC.

20GC.

x° —13x* +36x 5
Z ?

f'x)=
(A) 1
(B) 2
©) 3

D) 4
(E) 5

x* -9

X

For what value of x is the instantaneous rate of change of the function g(x) =

equal to the
average rate of change of g over the interval [1, 3]?

(A) x=0.281
B) x=0.438
(C) x=1.651
(D) x=3.464

(E) x= 4.160

At what value of x will g(x) =3¢”*and f(x)=In(x)+ 2 have parallel tangents?
(A) 0.934
®B) 1.070
(€) 1.314
(D) 1.940

(E) The functions never have parallel tangents.
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Free Response 1- No calculator

Let f be the function defined by f(x)=x>+2x*> —4x+k , where k is a constant.

(a) On what intervals is f increasing? Justify your answer.

(b) On what intervals is f concave downward? Justify your answer.

(c) Identify any local minimums on f(x). Justify your answer.

(d) Find the values of & for which / would have exactly two solutions.
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Free Response 2 - Calculator allowed
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Let / be a twice-differentiable function that is even and continuous on the closed interval [-6, 6]. The

function f and its derivatives have the properties indicated on the table below.

x 0 0<x<2 2 2<x<4 4 4<x<6
f(x) 2 Positive 0 Negative 2 Negative
() 0 Negative -1 Negative 0 Positive

f(x) Negative Negative 0 Positive Positive Positive

(a) Identify all x-coordinates at which 1 attains local minimum values over the interval [-6, 6]. Justify your
answer.

(b) Identify all x-coordinates of points of inflection over the interval [-6, 6]. Justify your answer.

(c) Identify the x and y coordinates of any local maximums and use the Second Derivative Test to justify
your answer.

(d) Sketch a graph of fover the interval [-6, 6]. ?

¥

A
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