
Algebra I	Name
Unit #2: Sequences & Exponential Functions	Period
Lesson #3: Recursive Formulas	Date
<u>Ex #1</u> : Consider the sequence 5, 8, 11, 14, 17	
 What is the pattern of the sequence? 	
• Is the sequence arithmetic or geometric?	
• What is the next number in the sequence	?
• What is an explicit formula for the sequer	nce?

Another formula that can be used to describe the pattern is

But what does A_{n+1} even mean? Let's look back at the pattern... 5 8 = 5 + 311 = 8 + 314 = 11 + 317 = 14 + 3What we call the 5th term? How do we find the 5th term if we know the 4th term? How do we write that? How do we find the 6th term if we know the 5th term? How do we write that? How do we find the (n+1)th term if we know the nth term? How do we write that? The statement $A_{n+1} = A_n + 3$ is a ______ formula. A recursive formula relates a ______ in the sequence to preceding ______ or ______ of the sequence.

<u>NOTE</u>: You may see the same sequence written as A(n+1) = A(n) + 3. It means the EXACT SAME THING!!!

Ex #2: Find the first five terms of the sequence defined by $A_{n+1} = A_n - 3$ where $A_1 = 5$

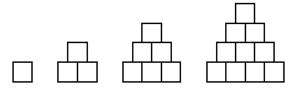
Ex #3: Find the first five terms of the sequence defined by $A_{n+1} = 3A_n$ where $A_1 = 5$

Ex #4: Find the first five terms of the sequence defined by f(n + 1) = 2f(n) - 3 where f(1) = 5

Ex #5: Find the first five terms of the sequence defined by $A_{n+1} = 3A_n + 4$ where A(1) = 1

Ex #6: Consider the sequence given by the formula $A_n = A_n - 1 - 5$ where $A_1 = 12$

The first five terms of the sequence are _____


An explicit formula for the sequence would be _____

Find A₆_____

Find A_{11_____}

Find A₁₀₀

Ex #6: A sequence of blocks is shown in the diagram below.

This sequence can be defined by the recursive function $a_1 = 1$ and $a_n = a_{n-1} + n$ Assuming the pattern continues, how many blocks will there be when n = 7?

1) 13	3) 28
2) 21	4) 36

- **Ex #7**: In 2014, the cost to mail a letter was 49¢ for up to one ounce. Every additional ounce cost 21¢. Which recursive function could be used to determine the cost of a 3-ounce letter, in cents?
 - 1) $a_1 = 49$; $a_n = a_{n-1} + 21$
 - 2) $a_1 = 0$; $a_n = 49a_{n-1} + 21$
 - 3) $a_1 = 21$; $a_n = a_{n-1} + 49$
 - 4) $a_1 = 0$: $a_n = 21a_{n-1} + 49$

Ex #8: Which recursively defined function represents the sequence 3, 7, 15, 31,... ?

1) f(1) = 3, $f(n + 1) = 2^{f(n)} + 3$ 2) f(1) = 3, $f(n + 1) = 2^{f(n)} - 1$ 3) f(1) = 3, f(n + 1) = 2f(n) + 14) f(1) = 3, f(n + 1) = 3f(n) - 2