

[image: image1.png]& TextPad - [C:\Documents and Settings\Denise\y Documents\Teaching\Java... [= |[B)
7 ead e e e G Uk B

Nl 3&eRE =)
TRV LR R R o "2

2=l

HelloAljava®
Hellowordjava

ANSI Characters

£
3
£
®
Ed
k]

Ry

<Your Name>

<Class Period>
S ——

public class HelloAll
(

public static void main(String [] args)

(
System. out.printia("Hello AIlI"),

)
)]

Name: __

Period: ___

Sample Program

dataTypes.java

[image: image2.png]

AAA_Start
A fill-in-the-blank program format

[image: image3.png]

This booklet is designed to be an overview of some of the important concepts in CP1. It does not contain everything taught in the class nor does it cover everything needed to pass the course. It is strictly meant to be used as a reference guide only.
Note: angle brackets < > are used to indicate information that should be completely replaced. The brackets should not be left in.

Examples:
<name>

should be replaced with

Joe

<data type>

should be replaced with

int

<variable>

should be replaced with

averageGrade

Assignment Statement – Assigns a value to a variable
1. Must include the identifier, assignment operator (=), value or expression, and semicolon

2. The value or expression must be compatible with the data type of the variable

3. Examples with values:

	Description
	Assignment Statement

	An int named numbers with a value of 28
	numbers = 28;

	A double named average with a value of 3.40
	average = 3.40;

	A char named choice with a value of b
	choice = ‘b’;

	A String named address with a value of 55 Main St
	address = “55 Main St.”;

	A boolean named done with a value of false
	done = false;

4. Examples with expressions (remember the data types must be compatible)

	Description
	Assignment Statement

	An int named totalScore which adds game1, game2 and game3

(Note: game1, game2, and game3 must be ints since totalScore is an int)
	totalScore = game1 + game2 + game3;

	A double named average for the average grade on 3 quizzes

(Note: at least one of the values must be a double since average is a double)
	average = (quiz1 + quiz2 + quiz3)/3.0;

	A char named choice with a value of menuItem

(Note: menuItem must be a char since choice is a char)
	choice = menuItem;

	A String named address that combines houseNumber & streetName

(Note: houseNumber and streetName must both be Strings since address is a String)
	address = houseNumber + streetName;

	A boolean named done with a value of check

(Note: check must be a boolean since done is a boolean)
	done = check;

Boolean Expressions

1. Evaluates to true or false

2. Boolean Expressions
a. Operators
	Symbols
	Definition

	<
	less than

	>
	greater than

	<=
	less than or equal to

	>=
	greater than or equal to

	= =
	is equal to (the same as)

	!=
	is not equal to (not the same as)

b. Examples: with num1 = 5 and num2 = 10
	Expression
	Meaning
	Boolean Value

	3 < 2;
	3 is less than 2
	false

	num2 >= num1;
	num2 is greater than or equal to num1
	true

	num1 == num2;
	num1 is equal to num2
	false

	num1 != num2;
	num1 is not equal to num2
	true

3. Compound Boolean Expressions – combines two boolean expressions
a. Compound Operators

	Symbols
	Definition
	Value

	&&
	and
	true only if both expressions are true

	||
	or
	true if one or both expressions are true

	!
	not or negation
	makes the opposite true or false

b. Examples: with
num1 = 2

num2 = 5

num3 = 10

	Compound Expression
	Expression 1 Value
	Compound Operator
	Expression 2 Value
	Result

	(num2 >= num1) && (num2 <= num3)
	true
	and
	true
	true

	(num2 >= num1) && (num2 >= num3)
	true
	and
	false
	false

	(num2 >= num1) || (num2 >= num3)
	true
	or
	false
	true

	(num2 <= num1) || (num2 >= num3)
	false
	or
	false
	false

	(num2 <= num1) || !(num2 >= num3)
	false
	or
	not false (true)
	true

[image: image4.png]

Case-Sensitive

1. [image: image5.png]

When a language knows the difference between upper and lower case characters

2. Examples:
‘A’ is read differently from ‘a’

stateTax is not the same as statetax

Class Declaration – Defines the properties of the class
1. If the program contains only one class, the class name is the name of your program

a. Example:
public class dataTypes

2. If the program contains only one class, you must save the program as the name of your class with the java file extension

a. Example:
dataTypes.java

3. A class declaration does not end with a semicolon. It is immediately followed by an open curly brace { which begins your program code. At the end of your program code, you must have a matching closing curly brace }
Code

1. [image: image6.png]

Source Code

a. The code that you write

b. [image: image7.wmf]Must be compiled

2. Object Code

a. The code created after a program is compiled

b. Low-level machine code

Comments – Explains to someone reading the program what the code is supposed to do

1. [image: image8.png]

Comments are ignored by the compiler

2. In TextPad, comments are green
3. Single Line Comment

a. Used to explain the purpose of the code

b. Can only be one line long

c. Begins with two forward slashes //
d. Examples:

// Data Declarations

// Input

// Process

// Output
4. Block Comment

a. Usually placed at the beginning of a program to explain what the program does

i. Should include your name, date, period, purpose of the program, and a description of the input, process, and output

b. Can be more than one line long

c. Must begin with a slash and star and end with a star and slash. /*

*/

d. Example:

/* **

<name>

<date>

<period>

This program will:

(I)

(P)

(O)

** */

[image: image9.png]

[image: image10.png]3105 b
72618

[image: image11.png]

Compiler

1. [image: image12.png]HELLD

A program that translates source code (code you write) into object code (machine code)

2. The first possible source of errors

[image: image13.png]

Computer Languages – used to write programs
1. Machine Language

a. Consists of only 1’s and 0’s

b. Example: 1011010011

2. Assembly Language

a. A low-level language

b. Uses short, cryptic abbreviations

3. [image: image14.png]

High-Level Language

a. Uses English-like words

b. Must be compiled into machine code

c. Examples: Java, C, C++, and Pascal

Constant

1. Used when you have data where the value will not change during the program
2. Same data types as a variable – int, double, char, and String

3. [image: image15.png]# input String
System. out. print('Eter your name: *);
name = inputDevice.nextLine),
System out println);

Declaration

a. Use an initialized declaration

b. Include the word final before the identifier

c. The identifier should be in all caps

d. Ends with a semicolon

4. Examples:

a. final double SALES_TAX = .0825;

b. final int DOZEN = 12;

c. final char LETTER = ‘x’;

d. final String SCHOOL_NAME = “Wilson”;

Curly Brackets {
}

1. Every open curly bracket { must have a closing curly bracket }

2. Marks the beginning and ending of a segment of code

3. They surround a block of code such as a class, method, etc

[image: image16.wmf]Data Declarations – defines the properties of a variable

1. You must declare every variable used in your program

2. [image: image17.jpg]

Include the data type, identifier, and semicolon
3. Examples:

a. int hours;

b. double average;

c. char choice;

d. String address;

e. boolean check;

Data Types – There are five types of information (data) used in computer programs
1. int – (integers) whole numbers

a. [image: image18.png]

Rules

i. Plus (+) and Minus (-) signs are fine
ii. Cannot have a decimal point

iii. Cannot have a comma

iv. Should not have leading zeros

b. Examples

	Variable
	Y/N?
	If not, why?

	-56
	Yes
	

	456,893
	No
	Has a comma

	8900
	Yes
	

	23.0
	No
	Has a decimal point

2. [image: image19.png]

double – real numbers (decimal numbers)
a. Rules
i. Plus (+) and Minus (-) signs are fine

ii. Decimals are fine

iii. Cannot have a comma

iv. Should not have leading zeros

b. Examples

	Variable
	Y/N?
	If not, why?

	-52.8
	Yes
	

	456,893
	No
	Has a comma

	0089
	No
	Has leading zeros

	23.0
	Yes
	

3. [image: image20.png]

char – single character or data

a. Rules
i. Can be a single letter, number, or symbol

ii. Must be enclosed in single quotes

b. Examples

	Variable
	Y/N?
	If not, why?

	‘h’
	Yes
	

	J
	No
	No sing quotes

	‘5’
	Yes
	

	‘$’
	Yes
	

	‘10’
	No
	Has more than one character

4. String – textual information with more than one character or data

a. [image: image21.png]

Rules[image: image22.png]2 %
23 Main St

i. Can be letter, numbers, and/or symbols

ii. Must be enclosed in double quotes

b. Examples

	Variable
	Y/N?
	If not, why?

	“Hello!”
	Yes
	

	“23 Main St.”
	Yes
	

	“585 – 3221”
	Yes
	

	“50.2”

	Yes
	

	Joe
	No
	No quotes

	‘name’
	No
	Has single quotes

5. [image: image23.png]&V

boolean – true or false values

a. Rules
i. Can only be either true or false
Errors – reasons the code will not compile or gives incorrect/unexpected results
1. [image: image24.png]

Syntax Error

a. Occurs during compiling

b. Result of code that does not conform to the rules of the programming language

c. Example: java:9: ';' expected
2. Runtime Errors

a. Occurs when the program is running

b. Results when a statement attempts an invalid operation

c. Example: an infinite loop

3. Logic Errors

a. Occurs when the program is running

b. Results when a program gives an invalid or unexpected response

c. Example: 2 + 2 = 7
Error Statements – common error statements in TextPad
1. Errors during compiling are syntax errors.
2. Parts of a TextPad error statement

a. H:\Java\dataTypes.java:37: ‘;’ expected

 System.out.print(“Enter your name: ”)

 ^

b. H:\Java\rectangleArea.java:18: cannot find symbol

symbol : variable lnegth

location : class rectangleArea

area = lnegth * width;

 ^

3. Examples of common error messages

	Message
	Common Cause
	Common Way to Correct

	‘;’ expected
	forgot a ; at the end of the statement
	add a ;

	‘)’ expected
	forgot a)
	add a)

	cannot find symbol
	variable is misspelled or has incorrect capitalization
	check spelling and capitalization with the variable declaration

	cannot resolve symbol
	did not declare the variable
	go back and declare the variable

	class <class name> is public, should be declared in a file named…
	class name and file name do not match
	save the file as the exact same name as the class – check spelling and capitalizations

Note: if the indicated line of code does not contain an error, check the lines of code immediately before or after it. Sometimes the error carries over to the next (or previous) line.
For Statements (Loops)
1. A For Statement (Loop) is used to create a pattern in a program.
2. Parts of a for statement
for(<initial value>; <boolean expression>; <incrementor/decrementor>)

{

<java statements>;

}

a. for – reserved word

b. <initial value> – starting number and must be defined as a variable

c. <boolean expression> – used to determine when to stop the loop. The loop will stop when the boolean expression is no longer true.

d. <incrementor/decrementor> – used to increase or decrease the initial value
incrementors:
num = num +1

// increases num by 1

num ++

// increases num by 1 (shortcut)

num = num + 2

// increases num by 2

num = num + <value>

// increases num by the value

decrementors:
num = num – 1

// decreases num by 1

num – –

// decreases num by 1 (shortcut)

num = num – 2

// decreases num by 2

num = num – <value>

// decreases num by the value

3. Examples

	Java Code
	Output

	for (int num = 0; num < 6; num + 1)

{

 System.out.print(num + “ “);

}

	1 2 3 4 5

	for (int num = 6; num < 11; num ++)

{

 System.out.println(num);

}

	6

7

8

9

10

	for (int num = 5; num > 0; num – 1)

{

 System.out.print(num + “ “);

}

	5 4 3 2 1

	for (int num = 10; num > 5; num – –)

{

 System.out.println(num);

}

	10
9
8
7
6

Identifier – A name given to a variable, class, type, method, etc

1. Rules

a. Must start with a letter

b. Must consist of only letters, numbers, and underscores

2. Examples:
subTotal

quiz1

netPay

If and If/Else Statements – allows different branches of code to be executed
1. If statements require boolean expressions

2. Can be thought of as a true/false question:
if <this> is true, do this code

otherwise, do that code

3. Can have an if statement without an else statement. But cannot have an else without an if.
4. Parts of an if statement

if(<boolean expression>)

{

<java statements>;

}

a. if – reserved word

b. <boolean expression> – used to determine whether or not to execute the code
c. { } – surrounds the code to be executed if the boolean expression is true
d. <java statements> – code to be executed
5. Parts of an if/else statement

if (<boolean expression>)

{

<java statements 1>;

}

else

{

<java statements 2>;

}

a. if – reserved word
b. <boolean expression> – used to determine whether or not to execute the code
c. { } – surrounds the code to be executed if the boolean expression is true
d. <java statements 1> – code to be executed if the expression is true
e. else – reserved word

f. { } – surrounds the code to be executed if the boolean expression is false

g. <java statements 2> – code to be executed if the expression is false
6. Can have nested if and if/else statements

7. Can have if, else if, else statements

8. Examples using
int num1 = 1;
int num2 = 2;

char choice = ‘b’;

	Java Code
	Boolean Expression
	Output

	if (num1 == 1)

{

 System.out.print(“Hello”);

}
	true

perform if
	Hello

	if (num1 == 2)

{

 System.out.print(“Hello”);

}

else

{

 System.out.print(“Goodbye”);

}
	false

perform else
	Goodbye

	if(num1 == num2)

{

 System.out.print(“num1 and num2 are equal”);

}

else

{

 if (num1 > num2)

 {

 System.out.print(“num1 is greater than num2”);

 }

 else

 {

 System.out.print(“num1 is less than num2”);

 }

}
	false
perform else

else has another (nested) if/else – check next if
false

perform else
	num1 is less than num2

	if (choice == ‘a’)

{

 System.out.print(“You chose a small cone”);

}

else if (choice == ‘b’)
{

 System.out.print(“You chose a medium cone”);
}

else if (choice == ‘c’)
{

 System.out.print(“You chose a large cone”);
}

else
{

 System.out.print(“You chose an extra large cone”);
}
	false – go to next else
else has an if – check if

true – perform code

skip the rest of the elses
	You chose a medium cone

Import Statements – imports code other programmers have written
1. Allows you to use code other programmers have written without having to copy/paste the actual code. Often referred to as ‘Tools’ or ‘Libraries’

2. Must come before the main class declaration (before your program code)
3. Must begin with the reserved word import and end with a semicolon

4. Examples:

a. import BreezySwing.*;

// allows justified output

b. import java.util.Scanner;

// allows keyboard input

c. import TurtleGraphics.*;

// allows graphics

Initialized Statements – A combined data declaration and assignment statement
1. Variables – used to give a variable an initial value which can change

a. Commonly used to set the initial value for a variable used in a loop or conditional statement

b. Examples:
	Data Declaration
	Assignment Statement
	Initialized statement

	int i;
	i = 0;
	int i = 0;

	boolean done;
	done = false;
	boolean done = false;

	double cost;
	cost = 6.59;
	double cost = 6.59

	char choice;
	choice = ‘a’;
	char choice = ‘a’;

	String name;
	name = “Wilson”;
	String name = “Wilson”;

2. Constants – used to set a value for a constant which will not change.

a. Examples:

final double SALES_TAX = .0825;

final int DOZEN = 12;

final char LETTER = ‘x’;

final String SCHOOL_NAME = “Wilson”;

Mathematical Operations
1. Mathematical Operations for Ints (whole numbers)

a. Any expression with two integers results in an integer answer
b. Operators:

	Symbol
	Name
	Math Operation

	()
	Parenthesis
	Do the mathematical operations inside first

	^
	Exponent
	A whole number base raised to a whole number power

	*
	Multiplication
	Multiply two whole numbers which results in a whole number

	/
	Division
	Divide a whole number by another whole number taking only the whole number portion of the answer

	%
	Modulus
	The remainder (what is left over) when two whole numbers are divided. Often abbreviated to ‘Mod”

	+
	Addition
	Add two whole numbers

	 –
	Subtraction
	Subtract a whole number from another whole number

c. Order of Operations:

Parenthesis

Exponents

Multiplication, Division, and Modulus (Mod) from left to right

Addition and Subtraction from left to right

d. Examples:

	Example
	Means
	Answer
	Description

	2 * (5 – 3)
	2 * 2
	4
	The parenthesis means to do the subtraction first

	2^4
	2 * 2 * 2 * 2
	16
	The base 2 is raised to the 4th power

	11 * 4
	11 times 4
	44
	11 multiplied by 4

	11 / 4
	11 divided by 4
	2
	How many whole times 4 goes into 11 (no decimal portion!)

	11 % 4
	11 mod 4
	3
	The remainder when 11 is divided by 4 (left over)

	5 + 4
	5 plus 4
	9
	5 plus 4

	5 – 4
	5 minus 4
	1
	5 minus 4

2. Mathematical Operations for Doubles (decimal numbers) numbers)

a. Any expression with at least one double results in a double answer
b. Operators:

	Symbol
	Name
	Math Operation

	()
	Parenthesis
	Do the mathematical operations inside first

	^
	Exponent
	A number base raised to a number power

	*
	Multiplication
	Multiply two numbers together

	/
	Division
	Divide a number by another number and get a decimal answer

	+
	Addition
	Add two numbers

	 –
	Subtraction
	Subtract a number from another number

c. Order of Operations:

Parenthesis

Exponents

Multiplication and Division from left to right

Addition and Subtraction from left to right

d. Examples:

	Example
	Means
	Answer
	Description

	2.0 * (5 – 3)
	2.0 * 2
	4.0
	The parenthesis means to do the subtraction first

	2.0^3
	2.0 * 2.0 * 2.0
	8.0
	The base 2 is raised to the 4th power

	11 * 4.0
	11 times 4.0
	44.0
	11 multiplied by 4.0

	11 / 4.0
	11 divided by 4.0
	2.75
	How many times 4.0 goes into 11

	5.0 + 4.0
	5.0 plus 4.0
	9.0
	5.0 plus 4.0

	5.0 – 4
	5.0 minus 4
	1.0
	5.0 minus 4

Math Methods – subroutines that perform specific math functions

1. Does the mathematical calculations for you

2. The return type is the type of data that the answer must be declared as

3. The argument type is the type of data that you give the method

4. Examples:
e. static double sqrt(int x)

// finds the square root of an integer named x

 answer = Math.sqrt(x)

// answer must be a double and x must be an int
f. static int abs(int x)

// finds the absolute value of an integer named x
 answer = Math.abs(x)

// answer must be an int and x must be an int

5. Common Math Methods:

	Method
	What It Does
	Example
	Value

	Math.PI
	Gives the value of π
	C = d*Math.PI
	C = d*3.1415…

	static int abs(int x)
	returns the absolute value of an integer
	x = Math.abs(-7);
	x = 7

	static double abs (double x)
	returns the absolute value of a double
	x = Math.abs(-7.6);
	x = 7.6

	static double round (double y)
	returns z rounded to the nearest whole number
	z = Math.round(3.23);
	z = 3.00

	static double floor (double z)
	returns z rounded down to the nearest whole number
	z = Math.floor(4.8);
	z = 4.0

	static double ceil(double z)
	returns z rounded up to the nearest whole number
	z = Math.ceil(5.1);
	z = 5.0

	static double sqrt(double x)
	returns the square root of x
	x = Math.sqrt(9.0);
	x = 3.0

	static double sqrt(int x)
	returns the square root of x
	x = Math.sqrt(25);

(Note: x must be a double)
	x = 5.0

	static double pow(double base, double exponent)
	returns the base raised to the exponent
	y = Math.pow(2.0, 3.0);

(Note: this is saying 2.03.0)
	y = 8.0

	static double pow (int base, int exponent)
	returns the base raised to the exponent
	y = Math.pow(2, 3);

(Note: y must be a double)
	y = 8.0

	static int max (int a, int b)
	returns the greater value of a and b
	m = Math.max(4, 8);
	m = 8

	static double max (double a, double b)
	returns the greater value of a and b
	m = Math.max(6.7, 3.5);
	m = 6.7

	static int min(int a, int b)
	returns the smaller value of a and b
	m = Math.min(4, 8);
	m = 4

	static double min(double a, double b)
	returns the smaller value of a and b
	m = Math.min(6.7, 3.5);
	m = 3.5

The data type in bold is the return type of the method (the data type that the answer must be)
The data type in italics is the argument type, which is the data type you give the method

Methods – subroutines called from the program (main method) to perform a function
1. A block of code outside the main method that performs a specific task or function

2. A way to reuse code. Instead of writing the same code over and over, a method can be written once and called whenever it is needed.

3. Method Calls
a. A method is called from inside the main method. It can be called alone or as part of an assignment statement.
b. A call includes the name of the method followed by parentheses and a semicolon
c. If the method requires arguments, they go inside the parentheses and are separated by commas.

d. Examples:

printHeader();

 // called alone, no arguments

getName(firstName, lastName);

 // called alone, 2 arguments

average = calcAverage(game1, game2, game3);
 //called in assignment statement

4. Method Declarations
a. A method declaration defines the properties of the method

b. It occurs outside the main method and includes the reserved word static, the return type of the method, the name of the method, and the data types and names of the arguments (if any)

c. It is immediately followed by the code to be executed surrounded by curly brackets
d. Examples:

static void printHeader()

{

System.out.print(“This program was written by Joe”);

}

static void getName (String firstName, String lastName);

{

<java statements>

}

static double calAverage (int game1, int game2, int game3)

{

double average;

average = (game1 + game2 + game3)/3.0;

return average;

}
5. Program Example
Without Methods

/* ***

Description: This program will calculate a bowler’s average score

(I) Bowler's name and scores for 3 games

(P) Calculate the average

(O) Bowler's name and average

** */

import java.util.Scanner;

// allows keyboard input

public class Bowling

{

// begins program

public static void main (String [] args)

{

// begins main block

// Programmer Information

System.out.println ("This program was written by Joe.");

System.out.println ();

// ***** Declarations

Scanner inputDevice = new Scanner(System.in);

String bowlerName;

int game1, game2, game3;

double average;

 // ***** INPUT

System.out.print("Please enter your name: ");

bowlerName = inputDevice.nextLine();

System.out.print("Please enter your score for game 1: ");

game1 = inputDevice.nextInt();

System.out.print("Please enter your score for game 2: ");

game2 = inputDevice.nextInt();

System.out.print("Please enter your score for game 3: ");

game3 = inputDevice.nextInt();

// ***** PROCESS

average = (game1 + game2 + game3)/3;

// ***** OUTPUT

System.out.print(bowlerName + " your average score was: "+ average);

System.out.println();

}

// ends main block

}

// ends program

With Methods

/* ***

Description: This program will calculate a bowler’s average score

(I) Bowler's name and scores for 3 games

(P) Calculate the average

(O) Bowler's name and average

** */
import java.util.Scanner;

// allows keyboard input

public class Bowling

{

 // begins program

static Scanner inputDevice = new Scanner(System.in);
//Note: scanner declaration has been changed

public static void main (String [] args)

{

// begins main block

printHeader();

// Call to print programmer Information

// ***** Declarations

String bowlerName;

int game1, game2, game3;

double average;

 // ***** INPUT

bowlerName = getName();

//call to get user’s name

game1 = getScore();

// call to get game1 score

game2 = getScore();

// call to get game2 score

game3 = getScore();

// call to get game3 score

// ***** PROCESS

average = calcAverage(game1, game2, game3);

// call to calculate average

// ***** OUTPUT

printResults(bowlerName, average);

// call to print results

}

// ends main block
static void printHeader()

// printHeader declaration
{

System.out.print(“This program was written by Joe”);

}

static String getName()

// getName declaration

{

String name;

System.out.print(“Please enter your name:);

name = inputDevice.nextLine();

return name;

}

static int getScore()

// getScore declaration

{

int score;

System.out.print("Please enter your score for game 1: ");

score = inputDevice.nextInt();

return score;

}

static double calcAverage(int game1, int game2, int game3)

// calcAverage declaration

{

double average;

average = (game1 + game2 + game3)/3.0;

return average;

}

static void printResults(String bowlerName, double average)

// printResults declaration

{

System.out.print(bowlerName + " your average score was: "+ average);

System.out.println();

}
}

// ends program

Print Statement – Prints something to the screen
1. Most programs need to print something
2. Examples:

 To print text or a sentence to the screen such as Hello World

System.out.print(“Hello World”);

 To print text and a variable to the screen such as Your state tax is (stateTax)

System.out.print(“Your state tax is ” + stateTax);

 To print a blank line to the screen

System.out.println();

 To print text, a variable, and a new line such as Your state tax is (stateTax)

System.out.println(“Your state tax is ” + stateTax);

Prompt Statement – When you ask the user for information

1. Examples

System.out.print(“Please enter your name: ”);

System.out.print(“Enter your score for game 1: ”);

Read-In Code – Reads input from the keyboard and saves the answers

1. After you ask the user for information (prompt) you must read in their answer

2. Different data types have different read-in codes

3. Examples:
a. int read-in code

<variable> = inputDevice.nextInt();

b. double read-in code

<variable> = inputDevice.nextDouble();

c. char read-in code

<variable> = inputDevice.next().charAt(0);

d. String read-in code

<variable> = inputDevice.nextLine();

Reserved Words – words that have special meanings and a specific purpose
1. The words cannot be changed by the programmer

2. In Textpad, reserved words are blue
3. Examples:
do

else

double

String

for

class

break

while

int

private

public

void

TextPad – A program that compiles source code into object code
1. To compile code
Go to the tools menu and compile or Ctrl + 1

2. To run code

Go to the tools menu and run java application or Ctrl + 2

3. TextPad uses colors for different types of code

Comments are green

Reserved words are dark blue

Brackets and braces are red

Words to be printed to the screen are light blue

4. Parts of the program

Variable – A location in memory whose value can change
1. It is a container to temporarily store information in your program

2. It must be given an identifier (name)

3. Every variable must be declared with a type and identifier (name)
While and Do While Loops
1. While and do while loops are used to allow repetition of specific blocks of code

2. Unlike a for loop which has a fixed number of repetitions, while and do while loops will continue to repeat until the boolean expression is no longer true.

3. While loops

e. Are pre-test loops. They test the boolean expression before executing the block of code
f. If the boolean expression is false, the code will never be executed

g. Format of a while loop:

while (<boolean expression>)

{

<java statements>

}

4. Do while loops
a. Are post-test loops. They test the boolean expression after executing the block of code.
b. If the boolean expression is false, the code will only be executed once. (In a do while loop, the code always executes at least once)
c. Format of a do while loop
do

{

<java statements>

}

while (<boolean expression>);

 Note: this if the first time that there is a semicolon (;) following the conditional statement
5. Examples:

	Java Code
	Boolean Expression
	Output

	i = 0;

while (i <= 5)

{

 System.out.print(i + “ “);

 i ++;

}
	initial value is true
	0 1 2 3 4 5

	i = 7;

while (i <= 5)

{

 System.out.print(i + “ “);

 i ++;

}
	initial value is false
	

	i = 0;

do

{

 System.out.print(i + “ “);

 i ++;

}
while (i <= 5);
	initial value is true
	0 1 2 3 4 5

	i = 7;

do

{

 System.out.print(i + “ “);

 i ++;

}

while (i <= 5);
	initial value is false
	0

/**

	<Name>

	<Period>

	<Date>

	Description:

		This program calculates the average grade for a student that took 2 quizzes and 1 test

**/

import java.util.Scanner;

public class dataTypes

{

	public static void main (String[] args)

	{

		// Declaration

			Scanner inputDevice = new Scanner(System.in);

			String name;

			int quiz1, quiz2;

double test, average;

			char letterGrade;

			

		// input

			System.out.print("Please enter your name: ");	//prompts for user’s name

			name = inputDevice.nextLine();			//reads-in a String

			System.out.print ("Enter the score for quiz 1: ");	//prompts for quiz 1 score

			quiz1 = inputDevice.nextInt();			//reads-in an int

System.out.print ("Enter the score for quiz 2: ");	//prompts for quiz 1 score

			quiz2 = inputDevice.nextInt();			//reads-in an int

System.out.print ("Enter the score for the test: ");	//prompts for test score

			test = inputDevice.nextDouble();			//reads-in an double

			System.out.println ("Please choose A, B, or C: ");	//prompts for a letter grade

			letterGrade = inputDevice.next().charAt(0);		//reads-in a char

		

// process

	average = (quiz1 + quiz2 + test)/3.0;

// output double

System.out.println("Welcome to Wilson High School " + name);

System.out.println ("Your average grade is " + average);

System.out.println ("You chose " + letterGrade + “ for a grade”);

	}

}

/* ***

 Description: This program will __

 (I) __

 (P) __

 (O) __

** */

import BreezySwing.*; 						// justify output

import java.util.Scanner; 							// allows keyboard input

import TurtleGraphics.*; 						// allows graphics

public class ______________________________

{ 							// begins program

	public static void main (String [] args)

	{ 						// begins main block

		// Programmer Information

			System.out.println ("This program was written by _____________________

System.out.println ("Program was run at " + new java.util.Date());

			System.out.println ("This program will tell the user the programmers name.");

			System.out.println ();

		

// ***** Declarations

		Scanner inputDevice = new Scanner(System.in);

// ***** INPUT

		// ***** PROCESS

// ***** OUTPUT

	}									// ends main block

}										// ends program

=

Compile

I declare you to be of type int

line number of error

error message

Program Name

code causing the error

error message

symbol causing the error

code causing the error

method name

return type

return type void is used when the method does not return a value

arguments

arguments must include the

data type and the identifier (name)

Toolbar

Document Selector

Editor Window

CP1
Page 1

