Class\_\_\_

\_Date\_

## Reteaching

Quadratic Functions and Transformations

## **Vertex Form of a Quadratic Function**

The vertex form of a quadratic function is  $y = a(x - h)^2 + k$ . The graph of this function is a transformation of the graph of the parent quadratic function  $y = x^2$ . The vertex of the graph is (h, k). If a = 1, you can graph the function by sliding the graph of the parent function h units along the *x*-axis and kunits along the *y*-axis.



If  $a \neq 1$ , the graph is a stretch or compression of the parent function by a factor of |a|.





|a| > 1The graph is a horizontal compression of the parent function



## Problem

What is the graph of  $y = 2(x + 3)^2 + 2$ ?

**Step 1** Write the function in vertex form: y = 2[x - (-3)] = 2[x - (-3)]

- **Step 2** The vertex is (-3, 2).
- **Step 3** The axis of symmetry is x = -3.
- **Step 4** Because a = 2, the graph of this function is a hoperator parent function. In addition to sliding the graph c and 2 units up, you must change the shape of the the vertex to help you sketch the graph.

| x | -5 | -4 | -3 | -2 | -1 | h |
|---|----|----|----|----|----|---|
| у | 10 | 4  | 2  | 4  | 10 | U |
|   |    |    |    |    |    |   |



Graph each function. Identify the vertex and axis of symmetry.

**1.** 
$$y = (x-1)^2 + 3$$
 **2.**  $y = (x+4)^2 - 2$  **3.**  $y = (x+2)^2 + 1$ 



4. y = 2(x - 1) 2 + 3



