complex.

14750P4.

Name

Lesson 13/15: Using the Quadratic Formula and Interpreting the Discriminant

LEARNING OUTCOMES

- I can determine whether the solution of a quadratic equation will be real or
- I can find real solutions to quadratic equations in one variable using multiple methods and justify my solution method.

WARM UP:

Identify the coefficients of the terms in each of the following quadratic equations.

$$1.x^2 + 7x + 10 = 0$$

$$2.\ 3x^2 - 18x = 12$$

$$3. (x + 12)(x - 4) = 0$$

$$4. x^2 - 8x + 9 = -11$$

rake note

Key Concept The Quadratic Formula

To solve the quadratic equation $ax^2 + bx + c = 0$, use the **Quadratic Formula**.

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

1. Solve $x^2 + 2x - 8 = 0$ using the quadratic formula.

2. Solve $x^2 + 4 = 4x$ using the quadratic formula.

3. Solve $3x^2 - 10x + 5 = 0$

Exercises 1–5: Solve the following equations using the quadratic formula:

1.
$$x^2 - 2x + 1 = 0$$

$$3b^2 + 4b + 8 = 0$$

3.
$$2t^2 + 7t - 4 = 0$$

4.
$$q^2 - 2q - 1 = 0$$

5.
$$m^2 - 4 = 3$$

The Discriminant and the Nature of the Roots of Quadratic Equations

Discriminants and Solutions of Quadratic Equations		
Value of the Discriminant	Number of Solutions for $ax^2 + bx + c = 0$	x-intercepts of Graph of Related Function $y = ax^2 + bx + c$
$b^2 - 4ac > 0$	two real solutions	two x-intercepts
perfect square → rational		t t
not perfect squ	are → irrational	
$b^2 - 4ac = 0$	one real solution	one x-intercept
$b^2 - 4ac < 0$	no real solutions	no <i>x</i> -intercepts

- 1. The roots of the equation $9x^2 + 3x 4 = 0$ are
 - 1) imaginary
 - 2) real, rational, and equal
 - 3) real, rational, and unequal
 - 4) real, irrational, and unequal

ALGEBRA I

- 2. Which number is the discriminant of a quadratic equation whose roots are real, unequal, and irrational?
 - 1) 0
 - 2) -5
 - 3) 7
 - 4) 4
- 3. Use the discriminant to determine all values of *k* that would result in the equation

 $x^2 - kx + 4 = 0$ having equal roots (only one solution).

For Exercises 4–7, without solving, determine the number of real solutions for each quadratic equation:

4.
$$p^2 + 7p + 33 = 8 - 3p$$

5.
$$7x^2 + 2x + 5 = 0$$

6.
$$2y^2 + 10y = y^2 + 4y - 3$$

7.
$$4z^2 + 9 = -4z$$

8. State whether the discriminant of each quadratic equation is positive, negative, or equal to zero on the line below the graph.

Identify which graph above matches the discriminants below:

Discriminant A:

$$(-2)^2 - 4(1)(2)$$

Discriminant B:

$$(-4)^2 - 4(-1)(-4)^2$$

Discriminant C:

$$(-4)^2 - 4(1)(0)$$

Discriminant D:

$$(-2)^2 - 4(1)(2)$$
 $(-4)^2 - 4(-1)(-4)$ $(-4)^2 - 4(1)(0)$ $(-8)^2 - 4(-1)(-13)$

Graph #: _____

ALGEBRA '

Name _____

CW/Homework

Lesson 13/15: Using the Quadratic Formula and Interpreting the Discriminant

Without solving, determine the number of real solutions for each quadratic equation.

1.
$$b^2 - 4b + 3 = 0$$

2.
$$2n^2 + 7 = -4n + 5$$

4.

5.

6.

