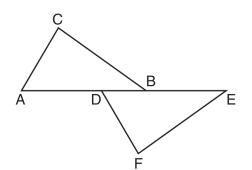

Geometry-R Thanksgiving Break Packet									
Score:		Period:							
Name:		Date:							
Answer all questions. You must show your work on all questions, except for the multiple choice questions, in order to receive full credit. Due Monday, 11/27/2017. 20% off late per day every day after Monday 11/27/2017. This will count as a quiz grade.									
1. Steve drew line segments <i>ABCD</i> , below. Scalene $\triangle BFC$ is formed.	EFG, BF, and CF as shown in the d	iagram 1.							
A B	C D								
E	F G								
Which statement will allow Steve	to prove $\overline{ABCD} \parallel \overline{EFG}$?								
A. $\angle CFG \cong \angle FCB$	B. $\angle ABF \cong \angle BFC$								
C. $\angle EFB \cong \angle CFB$	D. $\angle CBF \cong \angle GFC$								
2. In the diagram below, FE bisects	\overrightarrow{AC} at <i>B</i> , and \overleftarrow{GE} bisects \overrightarrow{BD} at <i>C</i> .	2.							



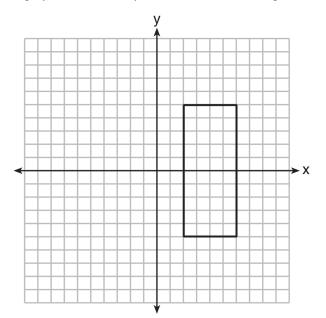
Which statement is always true?

A. $\overline{AB} \cong \overline{DC}$

- B. $\overline{FB} \cong \overline{EB}$
- C. \overrightarrow{BD} bisects \overrightarrow{GE} at C.
- D. \overleftarrow{AC} bisects \overrightarrow{FE} at B.

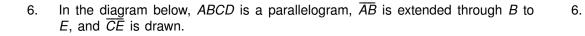
3. Kelly is completing a proof based on the figure below.

She was given that $\angle A \cong \angle EDF$, and has already proven $\overline{AB} \cong \overline{DE}$. Which pair of corresponding parts and triangle congruency method would *not* prove $\triangle ABC \cong \triangle DEF$?

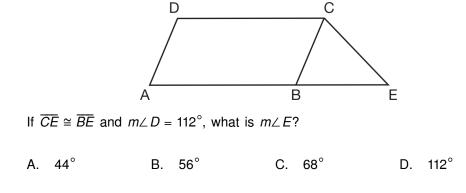

- A. $\overline{AC} \cong \overline{DF}$ and SAS B. $\overline{BC} \cong \overline{EF}$ and SAS
- C. $\angle C \cong \overline{F}$ and AAS D. $\angle CBA \cong \angle FED$ and ASA

4. Given $\triangle ABC \cong \triangle DEF$, which statement is *not* always true?

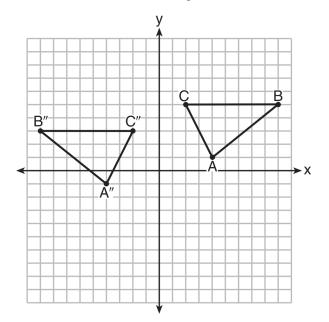
4.


- A. $\overline{BC} \cong \overline{DF}$
- B. $m \angle A = m \angle D$
- C. area of $\triangle ABC$ = area of $\triangle DEF$
- D. perimeter of $\triangle ABC$ = perimeter of $\triangle DEF$

5. As shown in the graph below, the quadrilateral is a rectangle.

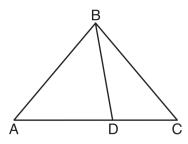


Which transformation would not map the rectangle onto itself?


- A. a reflection over the x-axis
- B. a reflection over the line x = 4
- C. a rotation of 180° about the origin
- D. a rotation of 180° about the point (4,0)

5.

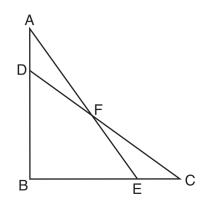
Score:



Describe a sequence of rigid motions which would map $\triangle ABC$ onto $\triangle A''B''C''$.

8. In the diagram below, $m \angle BDC = 100^{\circ}$, $m \angle A = 50^{\circ}$, and $m \angle DBC = 30^{\circ}$.

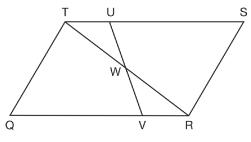
8.


7.

Which statement is true?

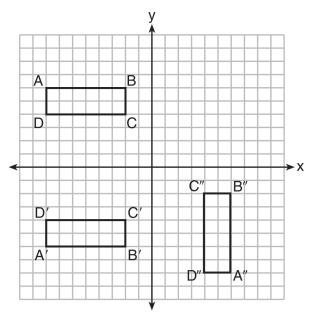
- A. $\triangle ABD$ is obtuse. B. $\triangle ABC$ is isosceles.
- C. $m \angle ABD = 80^{\circ}$ D. $\triangle ABD$ is scalene.

9. Given: $\triangle ABE$ and $\triangle CBD$ shown in the diagram below with $\overline{DB} \cong \overline{BE}$


Which statement is needed to prove $\triangle ABE \cong \triangle CBD$ using only $SAS \cong SAS$?

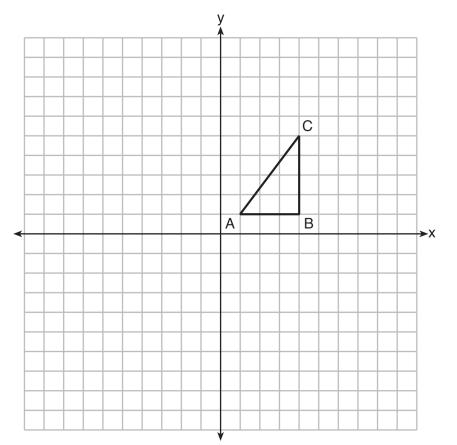
- A. $\angle CDB \cong \angle AEB$ B. $\angle AFD \cong \angle EFC$
- C. $\overline{AD} \cong \overline{CE}$ D. $\overline{AE} \cong \overline{CD}$

10. In parallelogram QRST shown below, diagonal \overline{TR} is drawn, U and V are points on \overline{TS} and \overline{QR} , respectively, and \overline{UV} intersects \overline{TR} at W.


9.

If $m \angle S = 60^\circ$, $m \angle SRT = 83^\circ$, and $m \angle TWU = 35^\circ$, what is $m \angle WVQ$?

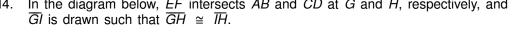
A.
$$37^{\circ}$$
 B. 60° C. 72° D. 83°

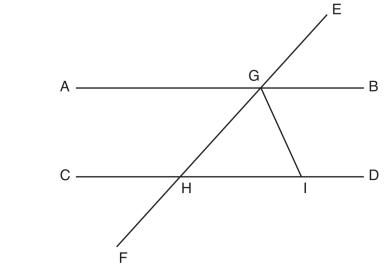

11. A sequence of transformations maps rectangle *ABCD* onto rectangle *A"B"C"D"*, as shown in the diagram below.

Which sequence of transformations maps *ABCD* onto A'B'C'D' and then maps A'B'C'D' onto A''B''C'D''?

- A. a reflection followed by a rotation
- B. a reflection followed by a translation
- C. a translation followed by a rotation
- D. a translation followed by a reflection

12. In the diagram below, $\triangle ABC$ has coordinates A(1,1), B(4,1), and C(4,5). Graph and label $\triangle A''B''C''$, the image of $\triangle ABC$ after the translation five units to the right and two units up followed by the reflection over the line y = 0.

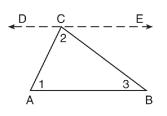



Geometry-R Thanksgiving Break Packet

- 13. As graphed on the set of axes below, $\triangle A'B'C$ is the image of $\triangle ABC$ after a sequence of transformations.
 - У В Á′ ►X В Ċ C'

Is $\triangle A'B'C'$ congruent to $\triangle ABC$? Use the properties of rigid motion to explain your answer.

14. In the diagram below, \overline{EF} intersects \overline{AB} and \overline{CD} at G and H, respectively, and \overline{GI} is drawn such that $\overline{GH} \cong \overline{IH}$.



If $m \angle EGB = 50^{\circ}$ and $m \angle DIG = 115^{\circ}$, explain why $\overline{AB} \parallel \overline{CD}$.

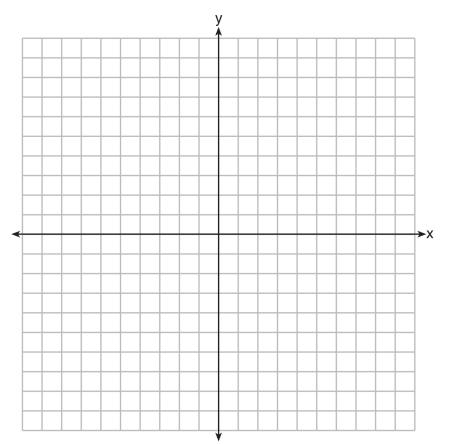
13.

15. Given the theorem, "The sum of the measures of the interior angles of a triangle is 180°," complete the proof for this theorem.

15.

Given: $\triangle ABC$

Prove: $m \angle 1 + m \angle 2 + m \angle 3 = 180^{\circ}$


Fill in the missing reasons below

Statements	Reasons			
(1) △ <i>ABC</i>	(1) Given			
(2) Through point C, draw \overrightarrow{DCE} parallel to \overrightarrow{AB} .	(2)			
(3) $m \angle 1 = m \angle ACD$, $m \angle 3 = m \angle BCE$	(3)			
(4) $m \angle ACD + m \angle 2 + m \angle BCE = 180^{\circ}$	(4)			
(5) $m \angle 1 + m \angle 2 + m \angle 3 = 180^{\circ}$	(5)			

16. Triangle *ABC* has vertices at A(-5,2), B(-4,7), and C(-2,7), and triangle *DEF* has vertices at D(3,2), E(2,7), and F(0,7). Graph and label $\triangle ABC$ and $\triangle DEF$ on the set of axes below.

Determine and state the single transformation where $\triangle DEF$ is the image of $\triangle ABC$.

Use your transformation to explain why $\triangle ABC \cong \triangle DEF$.

Problem-Attic format version 4.4.311 © 2011–2017 EducAide Software Licensed for use by Kevin Murphy

Terms of Use at <u>www.problem-attic.com</u>

Sco	ore:	Geometry-R	Thanksgiving B	reak Packet	Period:	 11/21/2017
1. Answer:	А					
2. Answer:	A					
3. Answer:	В					
4. Answer: Objective:	A G-CO.B					
5. Answer:	С					
6. Answer:	A					
7. Answer: Objective:	[answer va G-CO.A	ries]				
8. Answer:	В					
9. Answer:	С					
10. Answer:	С					
11. Answer:	A					
12. Answer:	[graph]					
13. Answer:	Yes, and a written	a correct explar	nation is			
14. Answer:	[answers v explanatior	ary] A complet	e and correct			
15. Answer:	All four rea	asons are corre	ct.			
16. Answer:	[constructio	on], [task], [exp	lanation]			