> Review Questions

- 1. Most of the ATP creation during respiration occurs as a result of what driving force?
 - A. Electrons moving down a concentration gradient
 - B. Electrons moving down the electron trans-port chain
 - C.) Protons moving down a concentration
 - D. Sodium ions moving down a concentration
 - E. Movement of pyruvate from the cytoplasm into the mitochondria
- 2. Which of the following processes occurs in both \(\begin{align*} 7. \) This process uses the proton gradient created by
 - A. Calvin cycle
 - (B) Chemiosmosis
 - C. Citric acid cycle
 - D. Krebs cycle
 - E. Glycolysis
- 3. What is the cause of the cramps you feel in your muscles during strenuous exercise?
 - (A) Lactic acid fermentation
 - B. Alcohol fermentation
 - C. Chemiosmotic coupling
 - D. Too much oxygen delivery to the muscles
 - E. Oxidative phosphorylation
- 4. Which of the following statements is incorrect?
 - A. Glycolysis can occur with or without oxygen.
 - (B) Glycolysis occurs in the mitochondria. C. Glycolysis is the first step of both anaerobic and aerobic respiration.
 - D. Glycolysis of one molecule of glucose leads to the production of 2 ATP, 2 NADH, and 2 pyruvate.

For questions 5-8, use the following answer choices:

- A. Glycolysis
- B. Krebs cycle
- C. Oxidative phosphorylation
- D. Lactic acid fermentation
- E. Chemiosmosis
- eta 5. This reaction occurs in the matrix of the mitochondria and includes FADH2 among its products.
- D 6. This reaction is performed to recycle NAD+ needed for efficient respiration.
 - the movement of electrons to form ATP.
- C 8. This process includes the reactions that use NADH and FADH₂ to produce ATP.
 - 9. Which of the following molecules can give rise to the most ATP?
 - A. NADH
 - B. FADH₂
 - C. Pyruvate
 - (D) Glucose
 - 10. Which of the following is a proper representation of the products of a single glucose molecule after it has completed the Krebs cycle?
 - A. 10 ATP, 4 NADH, 2 FADH₂
 - B. 10 NADH, 4 FADH₂, 2 ATP
 - C. 10 ATP, 4 FADH₂, 2 NADH
 - (D) 10 NADH, 4 ATP, 2 FADH₂
 - E. 10 NADH, 4 FADH₂, 2 ATP

- 5-. You are asked to estimate if a certain species of plant could live in a salt marsh. You collect the following data:
 - The overall Ψ of the soil (Ψ_{soil}): −2.2 MPa
 - Solute concentration of plant cell contents:
 0.08 M (assume i = 1, and 12°C
 - Pressure potential of the plant cells: -1.2 MPa
 - R = 0.00831 liter MPa/mole K

Do you think the plant could grow in this environment? Why or why not? Show your work.

- 3. The phenotype for scale color in gila monsters is determined by a specific locus. The dominant allele (black) is represented by G and the recessive allele (brown) is represented by g. The cross between a male gila monster with black scales and a female gila monster with brown scales produced the following F₁ generation:
 - Black-scaled gila monsters: 52
 - Brown-scaled gila monsters: 55
 - White-scaled gila monsters: 1

The black-scaled females and brown-scaled males from the F_1 generation were then crossed to produce the following F_2 generation:

- Black-scaled gila monsters: 53
- Brown-scaled gila monsters: 54
- White-scaled gila monsters: 0
- A. Based on the data presented here, determine the P-generation genotypes. Provide Punnett squares that support your answer.
- B. The white-scaled female in the F₁ generation resulted from a mutational change. Explain what a mutation is and discuss a type of mutation that might have produced the white-scaled female in the F₁ generation.
- 4. The idea of surface area is an important concept in biology. Explain how surface area plays a critical role in the digestive system.

- 6. In Earth's early history, the evolution of photosynthesis in simple cells occurred before the evolution of more complex cells. Briefly describe the significance of photosynthesis being present first.
- 7. What evidence supports the theory that chloroplasts and mitochondria are evolved from prokaryotic cells?