APBiology Syllabus

Teacher: Paul Geary Room: A234 Best way to reach me: paul.geary@rcsdk12.org Phone: 242-SOTA X2340

Class website: For assignments and resources go to <u>http://www.rcsdk12.org//Domain/5368</u>, which is under my name on the SOTA website

Course Overview

In AP Biology, an emphasis is on students making connections between the big ideas within the AP Biology Curriculum Framework. I teach the equivalent of an introductory college--level biology course, and it is designed to prepare students for the AP Biology Exam.

Lab techniques are learned through researching journal papers, hands-on labs which make up at least 25% of instructional time. **[CR7]** Labs emphasize development and testing of the hypothesis, collection, analysis and presentation of data, as well as discussion of results to discover unanswered questions about the particular topics addressed. A minimum of two labs in each big idea will be conducted. **[CR6]** Students are required to report on all laboratory investigations. **[CR8]**The student-directed and inquiry-based laboratory investigations used throughout the course enable students to apply the seven science practices as defined in the Curriculum Framework.

Materials

Text Book: Mader, S. and Windelspecht, M. 2013. *Biology,* Eleventh Edition, New York, NY: Mc Graw Hill. Pen and Pencils Loose leaf Paper College ruled Spiral Notebook Review book will be provided Folder or binder

School Culture and Classroom Climate

1. BE... Be on time Be prepared Be engaged

Tardy students with have to sign into the classroom when they arrive and be dealt a consequence.

2. Have cell phones & electronics put away. (see school policy)

NO ear buds, headphones, IPods, etc!

3. Follow the SOTA dress code. (see school policy)

NO hats, hoods, spaghetti straps, etc!

Students who are not in compliance with expectations 2 and 3 above will be addressed in the manner that is outlined in the school handbook.

4. Respect the educational process.

NO bullying, profanity, food, personal grooming, etc!

Students who violate expectation 4 may ...

- 1. be reminded of expectations and warned.
- 2. be asked to move seat and/or removed from classroom
- 3. receive a call home
- 4. receive a referral and/or lunch detention

Course Components

READINGS/ DO NOW: Include textbook/ journal articles. Students are provided with guided reading questions and are required to take notes and definitions which they keep in a journal.

FLIPPED and VIRTUAL CLASSROOM: Students are provided with a verity of online media resources from the class website in which they read or view online. For an assessment students take notes on what they have learned and become part of a discussion or debate the next day. Often this media becomes part of the writing topic.

ACTIVITY/LABS: Some activities are expected to be performed outside of class time & students are expected to hand in lab reports for evidence of completion.

DISSCUSSIONS and DEBATES: Often students are engaged in a discussion in which they are given time to prepare with another student. Student discuss thought provoking questions in which the work to tie in concept to the AP Biology big ideas or other learning objectives.

ASSESSMENT: A variety of assessments are used throughout the course. Some assessments will be a representation of the actual AP Exam. There will also be a great deal of writing assignments to assess the student's ability to interpret information, come up with examples, synthesize information in their own words and tie information back to the AP Biology big ideas and learning objectives.

•	Quizzes/ Written Assessments	40%
٠	Lab Work	20%
٠	Class work / online classwork	25%
	Class participation	
٠	Homework: Chapter Questions	15%

*Students and parents will find the most up to date student grade/attendance information on Parent Connect. Please help us by regularly checking this service.

Extra Help

I am always available 7:00am until the start of 1st period. I will post my schedule so students can seek extra help in my off periods. Also, time after school will be set aside. If a student request help after school, I can usually accommodate that request.

Class Website and Parent Connect

For assignments, homework, files and more information go to <u>http://secondary.rcsdk12.org/sota</u>. Look for my name under the teacher tab. Students and parents will also find the most up to date student grade/attendance information on Parent Connect.

SOTA CURRICULUM NIGHT

Wednesday, September 14, 2015 6:30 - 8:30 PM

SOTA PARENT CONFERENCES

5:00-7:00 PM
5

5:00-7:00 PM

Thursday, March 16, 2017 5:00-7:00 PM

MARKING PERIOD DATES

- MP1 Ends November 4, 2016
- MP2 Ends January 27, 2017
- MP3 Ends March 31, 2017
- MP4 Ends June 22, 2017

QR Code Quick links to

Parent Connect

My Class Website

My email

Class Content

AP BIOLOGY 4 Big Ideas

Big Idea 1: Evolution

The process of evolution drives the diversity and unity of life.

Big Idea 2: Cellular Processes: Energy and Communication

Biological systems utilize free energy and molecular building blocks to grow, to reproduce, and to maintain dynamic homeostasis.

Big Idea 3: Genetics and Information Transfer

Living systems store, retrieve, transmit, and respond to information essential to life processes.

Big Idea 4: Interactions

Biological systems interact, and these systems and their interactions possess complex properties

Curricular Requirements

CR1 Students and teachers use a recently published (within the last 10 years) college-level biology textbook.

CR2 The course is structured around the enduring understandings within the big ideas as described in the AP® Biology Curriculum Framework.

CR3a Students connect the enduring understandings within Big Idea 1 (the process of evolution drives the diversity and unity of life) to at least one other big idea.

CR3b Students connect the enduring understandings within Big Idea 2 (biological systems utilize free energy and molecular building blocks to grow, to reproduce, and to maintain dynamic homeostasis) to at least one other big idea.

CR3c Students connect the enduring understandings within Big Idea 3 (living systems store, retrieve, transmit, and respond to information essential to life processes) to at least one other big idea.

CR3d Students connect the enduring understandings within Big Idea 4 (biological systems interact and these systems and their interactions possess complex properties) to at least one other big idea.

CR4a The course provides students with opportunities outside of the laboratory investigations to meet the learning objectives within Big Idea

CR4b The course provides students with opportunities outside of the laboratory investigations to meet the learning objectives within Big Idea

CR4c The course provides students with opportunities outside of the laboratory investigations to meet the learning objectives within Big Idea

CR4d The course provides students with opportunities outside of the laboratory investigations to meet the learning objectives within Big Idea

CR5 The course provides students with opportunities to connect their biological and scientific knowledge to major social issues (e.g., concerns, technological advances, innovations) to help them become scientifically literate citizens.

CR6 The student-directed laboratory investigations used throughout the course allow students to apply the seven science practices defined in the AP Biology Curriculum Framework and include at least two lab experiences in each of the four big ideas.

CR7 Students are provided the opportunity to engage in investigative laboratory work integrated throughout the course for a minimum of 25 percent of instructional time.

CR8 The course provides opportunities for students to develop and record evidence of their verbal, written and graphic communication skills through laboratory reports, summaries of literature or scientific investigations, and oral, written, or graphic presentations.

MOLCEULES, CELLS & ENERGY Big ideas 1, 2, 3 & 4 [CR2]				
TOPICS	READINGS	ACTIVITY/LABS	ASSESSMENT	

A. MOLECULES Big	Chemistry of Life	Using kits to build	Student
idea 4		macro-molecule	generated
		models[CR4a] (SP 1)	concept maps
Polarity of water & its	Chapters 25 from	, ,	
importance to	textbook	Exercises: protein	
biological systems	loxibook	folding Lab [CR4b]	Unit test with free
biological systems			response practice
Carbon's role in the		Acid/base/buffer lab	response practice
molecular diversity of		activity [CR6] (SP 2)	Written lab
life			reports [CR8]
Monomers, polymers		Students do variations	
& reactions involved		by adding different	
in building & break-		macro-molecules to	
ing them down		solution to see effects	
considering		adhesion etc. (EU4.A	
polar/nonpolar		connects to BI 1)	
interactions		[CR3d] (SP 4)	
Various levels of		Given specific heat	
structures in protein		equation, in groups	
& carbohydrates		students try to come up	
		with a way to determine	
Enzyme structure as		specific heat of water-	
a special protein		15min (EU 4.C connects	
		to BI 1) [CR3d], [CR4a]	
Cohesion, adhesion,		& [CR4b] (SP 3)	
specific heat of water			
& its importance to			
biological systems			
Siciogical systems			
Acids, bases, and			
buffers			
DUIICIS			

MOLCEULES, CELLS & ENERGY Big ideas 1, 2, 3 & 4 [CR2]				
TOPICS READINGS ACTIVITY/LABS ASSESSMENT				

Identifying macro- molecules in our foods Supplements & Addons: Cohesion/ adhesion in nature Various macro- molecules in our foods Cycling of chemical elements in ecosystem	Portion of Chapter 55	LAB: Using and under- standing how different indicators are used to identify proteins, lipids, carbohydrates (incl. reducing sugars analysis) using Biuret, Benedict's, Sudan etc. [CR6] (SP 6) Research exploring how animals use water's properties for survival (comparing specific heat) (EU 4.C connects to BI 1) [CR3d] Students make posters of different element cycles including relative amts. of transfer [CR4b] , [CR4d] & [CR8]	Students compose chart comparing structural differences & how indicators physically work Students use chart to predict contents of unknown samples Students share one example they have found how animals use water's properties for survival.
B. HISTORY OF LIFE Big idea 1 Theories of how macro-molecules joined to support origin of life Was RNA 1st genetic material? Age of earth	Text chapter 25 outline notes guided reading	Clay catalyzed RNA polymerization activity with role playing focus on theories, redevelopment of theories over time (EU 1.B connects to BI 3) [CR3a] & [CR4c] (SP 6, 7) Discussion of journal article	Concept maps Reflection on the development and reformulation of scientific theories (extra) model or cartoon explaining the theories of origin of life [CR4a]

MOLCEULES, CELLS & ENERGY Big ideas 1, 2, 3 & 4 [CR2]				
TOPICS	READINGS	ACTIVITY/LABS	ASSESSMENT	

	— () (
C. CELLS (structure & function) Big idea 1 & 2	Text chapters 6,7,11	Mini poster/ models comparing structures of cells from 3 different	Student generated concept maps
Explain similar ties,	Outline notes	cell types from 3 differ- ent kingdoms (EU 1.A	Reading quizzes
differences & evolutionary relationships between prokaryotic & eukaryotic cells	Guided reading questions	connects to BI 3) [CR3a], [CR4a], [CR4c] & [CR8]	Mini poster comparing structures of cells from 3 different kingdoms
		LAB: Normal vs Plasmolyzed Cells using Plant cells (teacher generated) [CR6]	Unit test with Free Response practice
Cell membrane structure & function		Osmosis & diffusion [CR4b], [CR4c] & [CR6]	Written lab reports [CR8]
		Cell size lab teacher generated	graph & calculations
Cell communication	Journal articles on organelle based	Mini Poster Presentations comparing 3 feedback	Cell Size lab calculations
(signals, receptors, responses hormones)	health issues	mechanisms [CR8]	Formal Lab Writeup for Inquiry lab Diffusion &
Methods of transport across membranes		Inquiry lab # 4 Diffusion and Osmosis [CR6] (SP 3, 4)	Osmosis [CR8]
		LAB: Microscope techniques for	Microscope drawings & calculation
		observing & measuring different types of cells.	Analyze & Discuss chart comparing different types of cells & their functions in the human body
			Discussion of the endosymbiont hypotheses of the evolution of eukaryotic cells [CR3b]
D. IMMUNITY Big idea 2 & 3	Text chpt. 43		Student generated concept maps
Innate vs Acquired Response			concept maps
Humoral responses B cells vs T cells	Video Humoral Immune system	Students takes notes	Video discussion and quiz
Self vs nonself			

MOLCEULES, CELLS & ENERGY Big ideas 1, 2, 3 & 4 [CR2]				
TOPICS READINGS ACTIVITY/LABS ASSESSMENT				

E. CELL ENERGY ATP structure & function	Text chpts 8, 9, 10	Eduweblabs: Prelab "Enzyme Catalysis"	Student generated concept maps
Redox reactions in	Outline notes	Investigative lab #13: Enzyme Activity (EU 4.A	Reading quizzes
relation to cellular respiration	Guided reading questions	connects to BI 2) [CR3d] & [CR6]	Unit test with free response practice
Enzyme catalysis			graphs
Activation energy & specificity		Investigative Lab: Enzymes: Factors affecting the rate of	Enzyme graphs & questions
Cellular respira- tion glycolysis, citric acid cycle, electron transport chain & chemios- mosis		activity [CR6] (SP 2, 5)	Presentation of stu- dents group lab results to class [CR8]
Mitochondria form & function		Investigative Lab #6 Cellular Respiration [CR6] (SP 2)	Presentations of lab data and results [CR8]
Photosynthesis mechanisms; light/dark		Fermentation in Yeast Lab (Flynn kit) student generated variations	Graphs & discussion on Yeast Lab with
Compare/contrast to respiration		required	variations [CR8]
Alternative mechanisms			Presentations on lab results
Understanding light energy & the nano scale		Investigative Lab #5 Photosynthesis [CR6]	Lab writeup and analysis [CR8]
(the size of small things inside		Internet activity comparing different	Students make a
cells)		wavelengths of light in	chart comparing sizes of cellular parts
		relation to photosynthe- sis (teacher generated)	& larger items to evaluate range of
		Discussion on nanotech- nology & implications of	metric distance measurements down
		our smaller world [CR5]	to the nano scale [CR4b]

MOLCEULES, CELLS & ENERGY Big ideas 1, 2, 3 & 4 [CR2]				
TOPICS	READINGS	ACTIVITY/LABS	ASSESSMENT	

Г

A. MOLECULAR BASIS OF INHERITANCE DNA structure & replication RNA structure Protein Synthesis transcription & translation Mutations - basis for natural selection	Text chapters 16, 17 Journal Article Reading Watson and Crick's original Nature paper from 1953	DNA extraction Comparing DNA & pro- tein sequences from an internet based computer database in discussing evolutionary implications of mutations (SP 7)	Student generated concept maps Reading quizzes Journal article discussions Unit test with Free Response practice Bioinformatics results
 B. MITOSIS & MEOSIS Cell Cycle mechanism & control Chromosomes Sexual vs asexual reproduction & evolutionary advantages Stages of meiosis Genetic variation in offspring, mechanisms & impact on evolution Investigating genetics: environmental influences 	Text chapters 12, 13	Investigative Lab #7: Mitosis and Meiosis (EU 3.A connects to BI1) [CR3c] & [CR6] Karyotyping exercise (teacher generated students will have to do this on their own time) [CR4c]	Student generated concept maps Reading quizzes Unit test with Free Response practice Investigative LAB Analyses Karyotyping results Students choose & research controversial topics and the arguments supporting their genetic and/or environmental basis. Ex. Obesity, alcoholism, etc. [CR5]

MOLCEULES, CELLS & ENERGY Big ideas 1, 2, 3 & 4 [CR2]			
TOPICS	READINGS	ACTIVITY/LABS	ASSESSMENT

C. MENDELIAN GENETICS MENDEL'S LAWS Patterns of inheri- tance Predicting genetic outcomes genetic counseling Gene linkage & mapping Mutations revisited	Text chapters 14, 15 Scientific American Article Reading	activity: Looking at corn crosses & analyzing results	Student generated concept maps Reading quizzes Journal article discussions Unit test with free response practice
D. MOLECULAR GENETICS Regulation of gene expression Viruses	Text chapters 1821		Student generated concept maps Reading quizzes Journal article discussions
Gene expression in bacteria Biotechnology DNA Technology, Recombinant DNA, PCR, Gel electrophoresis Applications of DNA technology Use of bioinformatics to analyze genomes Comparing & discussing genomic sequences in relation to evolution	Journal Article Read- ing Article by Kary Mullis on PCR.	DNA Electrophoresis Investigative lab #9: Biotechnology I and Biotechnology II. Bacterial Trans- formation and Restriction Enzyme Analysis of DNA [CR6] Watch a lecture of this technique used at U of R	Unit test with free response practice Results for both transformation & electrophoresis labs Analysis and group presentation of Investigative lab Post video discussion and writ- up

MOLCEULES, CELLS	& ENERGY Big ideas	1, 2, 3 & 4 [CR2]	
TOPICS	READINGS	ACTIVITY/LABS	ASSESSMENT

E. EVOLUTIONARY BIOLOGY Darwin's explorations and theory of descent with modification & natural selection Galapagos Islands Overview Evidence for evolution (molecular analyses & morphological analyses Phylogeny & systematics Evolution of populations Hardy-Weinberg Law	Text chapters 22–25 Journal Article Reading <i>Beak of the Finch</i> by Jonathan Weiner	Activity: Genetics Survey Project analyzing traits of those around us Lab Investigation "2 Mathematical Modeling: Hardy- Weinberg [CR6] (SP2, 4, 5, 7) Activity: Students create Geologic timeline Activity: Hands on fossil analysis (at local science museum) [CR4a] (SP 6, 7)	Student generated concept maps Reading quizzes Article discussions Unit test with Free Response practice
---	---	--	---

MOLCEULES, CELLS &	ENERGY Big ideas 1	, 2, 3 & 4 [CR2]	
TOPICS	READINGS	ACTIVITY/LABS	ASSESSMENT

A. BIOLOGICAL DIVERSITY & MICROBIOLOGY Early life on earth Evolution of prokaryotes & eukaryotes	Text chapters 25, 26, 27 Text 29, 30	Students are to find an article involving genetic recombination using prokaryotes and present to class [CR5] Investigative LAB # 3: Analyzing Genes with BLAST (EU 1.B connects to BI 4) [CR3a] & [CR6]	Article presentation to class Student generated concept map Section test
 B. PLANTS & THEIR DIVERSITY How plants colonized land Evolution of seed plants Structure, growth & development Plants responses to internal & external stimuli Plant nutrition Angiosperm Reproduction 	Text 35, 36 Text 37, 38, 39	Eduweblabs: Prelab Transpiration Investigative LAB # 11: Transpiration (EU 1.B connects to BI 4) [CR3a] & [CR6] (SP 2, 3, 5) LAB: Flower dissection LAB: Students conduct a long term (exp't) lab investigation plant growth from seeds under various conditions in our greenhouse. [CR6] (SP 3.5, 6, 7)	 Practical Test specimen identification & placing on phylogenetic tree Student generated concept map Section test Eduweblab transpiration results Investigative labs analysis Flower dissection practical Formal writeup for students' own plant lab [CR8]
C. ANIMAL DIVERSITY Characteristics (body plans & systems) of invertebrates as you go up the phylogenetic tree Basic anatomy principles Analysis of structure & function of body systems Digestive, Circulatory, Respiratory, Excretory, Endocrine, Nervous, Muscular Systems	Text chapters 32– 34 and 40–49	Survey of animal phyla in concept map/chart form generated by students (Practical with actual animal specimens) Daphnea heart rate Lab Human Biology: Circula- tion and Blood Pressure Lab: Examining circulation of the goldfish [CR6] (SP 7) Lab: Dissection -Rat	Student generated concept maps (one for each system & animal diversity examination) Reading quizzes Unit test with Free Response practice Practical quiz observing various specimens and classifying them using students' own made chart of animal phyla Practical test with dissection specimen

MOLCEULES, CELLS & I	ENERGY Big ideas 1	, 2, 3 & 4 [CR2]	
TOPICS	READINGS	ACTIVITY/LABS	ASSESSMENT
	•		ASSESSMENTStudent generated concept mapsReading quizzesUnit test with Free ResponsesInvestigative Lab #11 report [CR8]report on primary productivityPresentation: Students present lab results to class with ways to improve water quality of their local river [CR5]Students complete "My Footprint" online and write a paper discussing their individual impact on Earth [CR5]

Please Return to AP Biology

Please complete the follow, separate, and return with your child for their first 100%	homework grade
Student Name:	
Parent/Guardian Name	
Parent email address (please include)	
Parent Phone (please note if I can text you)	
Student Signature	
Parent Signature	_